
© Copyright 2019 Xilinx

Pongstorn Maidee, Chris Neely, Alireza Kaviani and Chris Lavin

Xilinx Research Labs

San Jose, CA, USA

FPT’19, December 12, 2019

An Open-source Lightweight

Timing Model for RapidWright

1

© Copyright 2019 Xilinx

Outline

˃Problem statement

˃Background (RapidWright)

˃Timing model derivation and usage

˃Experimental results

˃Conclusions and future work

2

© Copyright 2019 Xilinx

1

2

3

4

5

6

1

1.5

2

2.5

3

3.5

4

Open Source for FPGAs

˃ Open source expedites software development

Expand academic ecosystem

Enable research collaboration

˃ Academic tools for FPGAs

VPR (FPL 1997), VTR (FPGA 2012)

Fostered many research activities

Large gap in figures of merit to commercial tools

‒ 2.2x speed-performance, 2.2x runtime [FPT2015]

˃ Open source tools for commercial FPGAs

RapidWright, ICEStorm

Foundational functionalities (without timing model)

Performance gap

Runtime gap

2.2x

2.2x

3

© Copyright 2019 Xilinx

Importance of Timing-driven Tools

˃ An open timing model

More flexibility for customized
backend solutions

Minimizes Vivado timing iterations

Explores wider solution space

˃ Without timing model

Depth-based optimization

Inaccurate

Delegate to Vivado

Increase runtime
1.0

1.5

2.0

2.5

2.3x performance gap

1

3

5

7

9

8x runtime increase

4

© Copyright 2019 Xilinx

Why RapidWright?

CIRCUITS IN SECONDS
Vivado must generalize

5

© Copyright 2019 Xilinx

Why RapidWright?

CIRCUITS IN SECONDS

Application Domains

A

Vivado must generalize RapidWright can specialize
5

© Copyright 2019 Xilinx

Why RapidWright?

CIRCUITS IN SECONDS

Application Domains

A B

Vivado must generalize RapidWright can specialize

Domain-specific

data flow graph

compiler

Front-end

Compiler

Design

Entry

High abstraction

Domain-specific

language

Enabling an ecosystem

for FPGA compiler

5

© Copyright 2019 Xilinx

Why RapidWright?

CIRCUITS IN SECONDS

Application Domains

A B

Vivado must generalize RapidWright can specialize

˃ Exploit domain-specific traits for:

Faster compile time

Timing closure predictability

Higher performance

Domain-specific

data flow graph

compiler

Front-end

Compiler

Design

Entry

High abstraction

Domain-specific

language

Enabling an ecosystem

for FPGA compiler

5

© Copyright 2019 Xilinx

RapidWright Overview

˃ Companion framework for Vivado

Fast, light-weight, open source

Java code, Python scripting

Communicates through Design
CheckPoints1 (DCPs)

˃ Enables targeted solutions

Reuse & relocate timed pre-
implemented modules

˃ Vivado dependency for timing poses

an obstacle for timing driven

algorithms

.DCP

.DCP

.DCP

.DCP

.DCP

.DCP

synth_design

opt_design

place_design

phys_opt_design

route_design

phys_opt_design

Checkpoint

Reader

Checkpoint

Writer

Domain Specific

“Shell creator”

or

“JIT assembler”

or

…

1DCP = netlist + P&R data + constraints

6

© Copyright 2019 Xilinx

An Open Timing Model for RapidWright

Goals:

1) Fast and lightweight footprint

2) Sufficient accuracy

3) General and extensible

7

© Copyright 2019 Xilinx

Abstraction

Memory

footprint

An Open Timing Model for RapidWright

~100 timing groups (TGs)

Equation-based

Goals:

1) Fast and lightweight footprint

2) Sufficient accuracy

3) General and extensible

~4k switches in one tile

~30k tiles in a small UltraScale+ device

Store delay per resource

Vivado RapidWright

7

© Copyright 2019 Xilinx

Interconnect tile

Node

Buffer
Wire

(segment)

Pip Node

Interconnect tile

Abstracting Routing Fabric Delays

Site Site

8

© Copyright 2019 Xilinx

Interconnect tile

Node

Buffer
Wire

(segment)

Pip Node

Interconnect tile

Abstracting Routing Fabric Delays

˃ Net delay = pip delay + node delay

Logic

delay

Site Site

Net delay

Input site pinOutput site pin

8

© Copyright 2019 Xilinx

Interconnect tile

Node

Buffer
Wire

(segment)

Pip Node

Interconnect tile

Abstracting Routing Fabric Delays

˃ Net delay = pip delay + node delay

Logic

delay

Site Site

Net delay

Input site pinOutput site pin

˃ Net delay = TG’s delay

Output

site pin

TG

Double

TG

Input

site pin

TG

8

© Copyright 2019 Xilinx

Fabric Discontinuities

˃ FPGA is heterogeneous: Transceiver, PCI, Processor Subsystem, CMAC

9

© Copyright 2019 Xilinx

DSP BRAM URAMCLB

Fabric Discontinuities

˃ FPGA is heterogeneous: Transceiver, PCI, Processor Subsystem, CMAC

˃ FPGA architecture is columnar and heterogeneous too! DSP, BRAM, URAM, IO

9

© Copyright 2019 Xilinx

DSP BRAM URAMCLB

Fabric Discontinuities

˃ FPGA is heterogeneous: Transceiver, PCI, Processor Subsystem, CMAC

Routing resources of the same type have different delays

11 CLBs 7 CLBs, 2 DSPs, 1 URAM

˃ FPGA architecture is columnar and heterogeneous too! DSP, BRAM, URAM, IO

˃ Heterogeneous nature causes timing discontinuity

A B

9

© Copyright 2019 Xilinx

Equation-based Representation of Timing Group Delay

˃ TG’s delay

L : nominal length of the segment

d : distance of crossing large tiles,
such as DSP, BRAM, URAM, PCI and IO

𝒅𝒆𝒍𝒂𝒚 = 𝒌𝟎+ 𝒌𝟏𝑳 + 𝒌𝟐𝒅

10

© Copyright 2019 Xilinx

Equation-based Representation of Timing Group Delay

˃ TG’s delay

L : nominal length of the segment

d : distance of crossing large tiles,
such as DSP, BRAM, URAM, PCI and IO

𝒅𝒆𝒍𝒂𝒚 = 𝒌𝟎+ 𝒌𝟏𝑳 + 𝒌𝟐𝒅

y = 43 + 3.5 L
R² = 0.96

40

50

60

70

80

90

100

0 5 10 15

Single

Double

Quad

Long

L

ps Horizontal TGs

˃ Find k0, k1, L

Plot delays of TG having d = 0

Adjust L so that all delays fit to a linear equation

10

© Copyright 2019 Xilinx

Equation-based Representation of Timing Group Delay

˃ TG’s delay

L : nominal length of the segment

d : distance of crossing large tiles,
such as DSP, BRAM, URAM, PCI and IO

𝒅𝒆𝒍𝒂𝒚 = 𝒌𝟎+ 𝒌𝟏𝑳 + 𝒌𝟐𝒅

y = 43 + 3.5 L
R² = 0.96

40

50

60

70

80

90

100

0 5 10 15

Single

Double

Quad

Long

L

ps Horizontal TGs

˃ Find k0, k1, L

Plot delays of TG having d = 0

Adjust L so that all delays fit to a linear equation

˃ Find d for each TG type

Plot extra delays of TGs having d > 0

Adjust d of hard block columns to fit a linear equation

y = 2.4 d
R² = 0.99

-100

0

100

200

300

400

500

0 50 100 150 200

d

ps Horizontal Quad

10

© Copyright 2019 Xilinx

Example Inter-site Net Delay Computation

˃ Compute and store cumulative d on INT tiles (Once)

˃ Linearly traverse the route

˃ Recognize TG to select equation and L

˃ Lookup d and compute TG delay

0 0 3 3 3 3 19

11

© Copyright 2019 Xilinx

Example Inter-site Net Delay Computation

˃ Compute and store cumulative d on INT tiles (Once)

˃ Linearly traverse the route

˃ Recognize TG to select equation and L

˃ Lookup d and compute TG delay

0 0 3 3 3 3 19

Output

site pin

0 +

Quad

85.2

43 + 3.5 × 10 + 2.4 × 3
𝑘0 𝑘1 𝐿 𝑘2 𝑑

11

© Copyright 2019 Xilinx

Example Inter-site Net Delay Computation

˃ Compute and store cumulative d on INT tiles (Once)

˃ Linearly traverse the route

˃ Recognize TG to select equation and L

˃ Lookup d and compute TG delay

0 0 3 3 3 3 19

346.5 =

Single

43+

Quad

43 + 3.5 × 10 + 2.4 × 𝟎

78+

Double

43 + 3.5 × 5 + 2.3 × 16

97.3+ 43+

Input

site pin
Output

site pin

0 +

Quad

85.2

43 + 3.5 × 10 + 2.4 × 3
𝑘0 𝑘1 𝐿 𝑘2 𝑑

11

© Copyright 2019 Xilinx

Timing Model Correlation

˃ Randomly placed 2-pin net in one clock region

˃ Repeat 40K times

˃ High correlation

˃ Pessimistic on average at 0.7%

Correlation 0.99

Spearman’s 0.99

Estimation error

Error (ps) Error %

Avg 0.8 0.7

Min -53.9 -12.7

Max 40.0 14.9

12

© Copyright 2019 Xilinx

Pessimistic

for most design

0

5

10

15

20

25

30

-6% -4% -2% 0% 2% 4% 6% 8%

0

5

10

15

20

25

30

-2% 0% 2% 4% 6% 8%

Error (%) at 775 MHzcountError (%) at 500 MHzcount

Timing Model Accuracy

˃ 240 Synthetic designs

LUT utilization: 50% - 88%, Rent’s exponent: 0.3 – 0.8

Logic depth: 3 to 7
13

© Copyright 2019 Xilinx

Pessimistic

for most design

0

5

10

15

20

25

30

-6% -4% -2% 0% 2% 4% 6% 8%

0

5

10

15

20

25

30

-2% 0% 2% 4% 6% 8%

Error (%) at 775 MHzcountError (%) at 500 MHzcount

Timing Model Accuracy

˃ 240 Synthetic designs

LUT utilization: 50% - 88%, Rent’s exponent: 0.3 – 0.8

Logic depth: 3 to 7

0

10

20

30

40

50

1% 2% 3% 4% 5% 6% 7% 8% 9% -5

5

15

25

35

45

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

count
Absolute error (%) at 775 MHz

count
Absolute error (%) at 500 MHz

Average error 1.9% Average error 3.5%

13

© Copyright 2019 Xilinx

Real Designs (Data Path Delay)

Design Vivado (ps) RapidWright (ps) Estimating

error

Microblaze 1874 1906 1.7%

Picoblaze 1609 1615 0.4%

Parser 2742 2665 -2.8%

14

© Copyright 2019 Xilinx

Real Designs (Data Path Delay)

Design Vivado (ps) RapidWright (ps) Estimating

error

Microblaze 1874 1906 1.7%

Picoblaze 1609 1615 0.4%

Parser 2742 2665 -2.8%

Complex routing

Complex LUTs
Cascaded Carry Logic

LUT6_2 CARRY CARRY LUT5 LUT6

Non-trivial critical path

14

© Copyright 2019 Xilinx

Timing-driven Routing

˃ Pin-to-pin router (for demonstration)

Route Timing (ps) Non-timing (ps) Improved Vivado (ps)

Horizontal 444 503 11.7% 429

Diagonal 704 813 13.4% 706

→

→ →

Site Site

With our timing model

Site Site

Without our timing model

(minimize # hops)

5 hops = 503 ps

6 hops = 444 ps

High delay

15

© Copyright 2019 Xilinx

Timing-driven Routing

˃ Pin-to-pin router (for demonstration)

Route Timing (ps) Non-timing (ps) Improved Vivado (ps)

Horizontal 444 503 11.7% 429

Diagonal 704 813 13.4% 706

→

→ →

Site Site

With our timing model

Site Site

Without our timing model

(minimize # hops)

5 hops = 503 ps

6 hops = 444 ps

High delay

15

© Copyright 2019 Xilinx

Conclusions and Future Work

˃ Introduce a lightweight timing model

2% accuracy on average compared to Vivado’s result

Small memory footprint (less than 1 KB)

˃ Enable timing-driven backend tools in RapidWright

Available NOW at http://www.rapidwright.io

Timing library Java package: com.xilinx.rapidwright.timing

Examples

‒ http://www.rapidwright.io/docs/ReportTimingExample.html

‒ http://www.rapidwright.io/docs/PipelineGeneratorExampleWithRouting.html

˃ Future work

Expand coverage to DSP and BRAM

Model clock network

16

http://www.rapidwright.io/

© Copyright 2019 Xilinx

Adaptable.

Intelligent.
Looking forward to contributions from the community

17

