Build Your Own Domain-specific
Solutions with

Chris Lavin and Alireza Kaviani
Xilinx Research Labs
2/24/19

XILINX.

Why are Domain-specific solutions important?

RapidWright value proposition
Why open source?

What is RapidWright?

How to use RapidWright?

72 XILINX.

'FPGA Industry and Community Dynamics

FPGA Silicon
Devices + P&R

Place & route
startups

~1990s

3'd party HDL
synthesis

~2000s

FPGA compilers
Platform compilers
SDx, OpenCL NeXt?

High level
synthesis (HLS)

Open source

~201 Application and :
0109 AWS ecosystem | Community
~Present contribution?

> Continuous industry and community engagement

>> 3

© Copyright 2019 Xilinx

& XILINX

' The Age of Domain Specific Architectures

40 years of Processor Performance Matrix Multiply Speedup Over Native Python

100000 100000
End of Dennard scaling

and slowing Moore’s law

Customization
10000 | opportunity

10000

=
- 1000
= g
> 1000 '
§ g_ 100
= @
Q
= 100 10
E
= 1
5 cisc T
10 2X13.5yrs Python C

(22%lyr)

+80 1985 1990 1995 2000 2005 2010 2015
Based on SPECIntCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6fe. 2018

62806

63,000!

+ parallel + memory + SIMD
loops optimization instructions

from: “There’s Plenty of Room at the Top,” Leiserson, et. al., to appear.

> Achieve higher efficiency by tailoring the architecture to characteristics of the domain
>> More effective parallelism for a specific domain, More effective use of memory bandwidth

>> Domain specific programming language

Source: A New Golden Age for Computer Architecture: (Domain-Specific Hardware/Software Co-Design)
John Hennessy and David Patterson
Stanford and UC Berkeley,13 June 2018
© Copyright 2019 Xilinx

& XILINX

'Raising the Abstraction of Design Entry

FPGA Silicon

Devices + P&R

Place & route
startups

G A S FPGA compilers
synthesis

Platform compilers

HLS + Open
Source

FPGA Tool/Interface Stack

Highest DSA compilers

Productivity

SDx, OpenCL

Domain
expertise +
open source

Overlays
SDx (SDAccel, SDSoC) N

 SDx (SDAccel, SDSoC) NN
Highest e
Performance RTL Synthesis

@RAPID

Place & Route - WRIGHT.
API interface &

Device models, Bitstream Open Source

Device, Heterogenous

Architecture components > Enabling domain specific performance optimizations

o & XILINX.

© Copyright 2019 Xilinx

'RapidWright Value Proposition
RapidWright

T ™
7 N o
[FPGAs + \
7 _ /,
§ (. Pre '\\,
< - Implemented %
X \. _ blocks ,
O AN \ J~—=7
LL S— N /
m ~—_
L
. SDX

IMPLEMENTATION COMPILE TIME

& XILINX

© Copyright 2019 Xilinx

'Focus on Emerging Applications

Latency-flexible
Connectivity

b e

-

> Module-based approach to implementation
>> Lock-in performance with reusable modules

g PEO,3 PE1,3 PE2,3 PE3‘3
MEM
0 f i i i
g PE0,2 PE1,2 PE2,2 PE3‘2 /
\ t t t t
g PEO,l PE]_,]_ PE2,1 PE3,1
MEM
1 | | | |
g PEO,O PEl,O PE2,0 PE3,O
> Goals

>> Fewer inter-block timing closure issues

© Copyright 2019 Xilinx

>> Productivity

— Order of magnitude reduction in
compile time per domain

>> Performance (near-spec)
>> Predictable timing closure

Designs with
Replication

& XILINX

' Proposed Domain-specific Tool Flows

Application in
Domain 2

Developers Tools and
Driving Design Frameworks

\ Data scientists, \ High abstraction
application Domain-specific

/ architects // language
Academic and \ Domain-specific Front-end

industrial ~ data flow graph Combiler
/ community (LLVM) compiler P

: s N Relocate pre- 1 |
X|||nx n N RAPID \

\ open Soaurccle \ Implemented IR —_— g
ya ~ operators and Back-end , \/lVADO

communit y, . i
/ y S L functions compiler i 4 1
X

/)(/L IN.
DEVICE
- & XILINX.

<

Application
in Domain 3

EEEEEEEEED

© Copyright 2019 Xilinx

'Domain Tool Flow Example

LLVM Compute Unit

LLVM Parser

Master Dependency Tracker

HHEHS s ' ==
=1 Tl o ;
|) | S Event Queue Register

File

Mem
Write

i

| To gem5 Memory Interface

Mem
Read Compute

T L Betier 320

Design Entry Front-end Compiler

> Fact
>> Emerging domains such as surveillance or vision have high replication

Back-end compiler

RAPID
WRIGHT.

> Community role

v

>> |dentify and extract operators and functions in the domain

" ¥ Vision Edge
i Layer

{4, (VisEdge)
v

4%

> RapidWright value proposition
>> Assemble relocatable pre-implemented domain operators

,I-g\
>> Deliver the best inference/watt \

\l(o

© Copyright 2019 Xilinx

& XILINX

'Building Relocatable Domain-specific Shells

900

600 —
N 500
T

200
100
0

> Fact

>> Advances in silicon have created QoR opportunity

> Community role

800 /
&
700

——BRAM

L

The QoR
Opportunity

J

= 400 y
300 ——| ogic & DSP

¢ Qut of the box Fmax
Series 7 (28ns) UltraScale (20ns) UltraScale+ (16nm)

>> Domain-specific shell design or overlays

> RapidWright value proposition

>> Achieve near-spec performance

© Copyright 2019 Xilinx

—

Shell /
overlay
spec

¥

@RAPID
WRIGHT.

v
VIVADO!

/ XL /N)/
DEVICE
' & XILINX.

Success Scenario: Rapid Domain-specific Assembly

Data Flow

Parser
+

RAPID |
WRIGHT | |

PCle + MIG

1vE : =] = :

. v
.‘ : ‘
IR 1 = !
PRy =5 .
HEE
HEHI O F ;
EHE :
2L EISIEEEIE E it =X
v v
.‘ ! ‘
{ '
SR
H N R = *
HEH L —=E d =
HE
HE: -
31 EIEISEIISSTE | it ENES |
SEHIG = !
H R == ! :
HEHHH HH =5 :
HE
E
HEHHE P == EXI
. v
F ;
.‘ ! ‘
|

11— T

& XILINX

© Copyright 2019 Xilinx

What is RapidWright?

NN
s

22 XILINX

'RapidWright Overview

> Companion framework for Vivado
>> Fast, light-weight, open source synth_design

> Communicates through Design
CheckPoints! (DCPs)

>> Java code, Python scripting

Checkpoint
Reader

Domain Specific
“Shell creator”

opt_design

place_design

> Enables targeted solutions

>> Reuse & relocate pre-implemented or
modules phys_opt_design “JIT assembler”
> Just-in-time implementations or
>> Create shells & overlays route_design
> Power user ecosystem phys_opt_design

Checkpoint
Writer

RAPID
WRIGHT.

>> Academic algorithm validation
>> Rapid prototyping of CAD concepts

VIVADO'

IDCP = netlist + P&R data + constraints

& XILINX

© Copyright 2019 Xilinx

'4 Ways to Design in RapidWright

BUILD ROUTED CIRCUITS REUSE P&R CIRCUITS

O,
®@

FROM SCRATCH GENERATORS FROM VIVADO SHELLS & OVERLAYS
> Well-defined circuits in seconds > Reuse/relocate P&R circuits from Vivado
> Parameterizable library of generators > Combine P&R circuits together

& XILINX

© Copyright 2019 Xilinx

A Modular Pre-implemented Methodology

USER TASKS (MANUAL)

1. Design selection attributes:
« Modular
e Latency tolerant
» Prefers replication

Match Design Structure to
2. Placement planning ' - ' ’ Architecture Patterns

TOOL TASKS (AUTOMATED)

3. P&R modules cached: [yz" RapidWright

) Eelocatt)?ble \m w (Block Assembly, mmp | m w
. Reusable s:
= 00C T Block } ||||I|‘ |

« Timing predictable
_“Cache™

Flow
&

4. Run implementation

& XILINX

© Copyright 2019 Xilinx

Creating Pre-implemented Modules (Vivado OOC Flow)

ooc

Synthesis

Dbg_Clk|

ICE| M_AxL| 0T[2:0]
IReady| [M_AxL up
ILE| M_Ax_| DOR[3L1:0] b
= e Constraint
Instr0:31 M. L ALID
Interrupt| M_AxL DY
terrupt_Address[0:31 [M_ax_1 DY

nnnnn

oo | Block
Place & Route = Packager

& XILINX

>> 16 © Copyright 2019 Xilinx

' RapidWright Pre-implemented Module Flow

Fully Placed,

Partially Routed
Implementation

O

FROM VIVADO

VIVADO!

Final
Impl.

L Rout
Mgy e

il I 1l i ‘
|)

I i] ‘H\jl 1H‘!
TTEE I |
I] wu\}”}’iil
EETHEE RN “ i
| 4 | BB |
Il 14 e

: Block
Block
DeSIQn Assembler oc

Parser Placer

S0 RAPID
Cache WRIGHT.

© Copyright 2019 Xilinx

& XILINX

' Design Performance Results

Design Target Baseline RapidWright! | Gain
Device | (initial design) Flow

Seismic
FMA
GEMM

ML overlay

KU040
KU115
KU115
ZUI9EG

270MHz 390MHz 41%
270MHz 41 7MHz 94%
391MHz 462MHz 16%
368MHz 541MHz 50%

Speed Grade: -2
Utilization table

Seismic
FMA (HPC design)
GEMM

ML overlay

93% 5%
25% 50% 97% 6%
19% 20% 87%
46% 29% 42% 96%

'RapidWright: Enabling Custom Crafted Implementations for FPGAs, FCCM 2018

© Copyright 2019 Xilinx 8 XI LINX

'Re-locatability & Reuse of Multiple Implementations

RUN

Vivado

Fuax (MHZ)

270

RapidWright 417 (+53%)

> 97% DSP utilization
> 4.4 TeraOp/s

> “Fabric discontinuites”
>> SLR boundary

>> |0 Columns

>> Laguna Tiles

Impl Impl
#0 #2
Impl Impl
#1 #3

>>19

© Copyright 2019 Xilinx

& XILINX

'Latency Flexibility: AXI| Stream Register Slices 00
O

GENERATORS

> Exploiting latency-tolerance and architectural knowledge
>> Automatic insertion of latency blocks

0 & XILINX

© Copyright 2019 Xilinx

'Debugging with an ILA (ChipScope)

| downloaded my design
and it's not working. But it
works in simulation!

| added an ILA, but the
bug is gone!

>> 21

© Copyright 2019 Xilinx

You'll need to recompile
with an ILA to debug it.

& XILINX

'Experiment: Insert Pre-implemented ILA

> Preserves existing
>> Placement
>> Routing

> Only occupy
unused resources

>> 22
© Copyright 2019 Xilinx 8 XI LINX

'Preserve Existing Placement & Routing

FROM VIVADO

Debug Blocks
Inserted by
RapidWright

>> 23 | i & XILINX

© Copyright 2019 Xilinx

' Debug Instrumentation Speedup

45.0
—--Baseline
40.0 _ . |
--RapidWright Debug |
350 i
& |
£ 30.0 |
= i
c 25.0 |
v 20.0 i
£ i |
€ 15.0 | |
5 | |
= 10.0 | . | I |
35x 24X 12x 97X 33X
5.0 | | | | |
| | e : o
0.0 = —— ——
dspl (9% CLBs) 10g (10% CLBs) dsp2 (20% CLBs) sparc (31% CLBs) 21ch (70% CLBs)
72 & XILINX.

© Copyright 2019 Xilinx

'Beyond a Pre-implemented
Methodology

> RapidWright probe router enables higher productivity
>> 21X more debug turns per day
>> Highest level of routing preservation possible

>> Future innovation:
— iteration with extra probe inputs
— Automatic insertion of pipeline flops to manage timing

FROM
SCRATCH

LA Cells
— Probe Routes

Vivado RapidWright
modify _debug_probes | ProbeRouter

1 3 O m I n S 6 . 3 m I n S 2 1 X A Frver PEPTITIEREL i T

RapidWright Probes Rerouted

& XILINX

© Copyright 2019 Xilinx

' Pre-implemented Data Movement Shell

S
> Goals =
! ompute

DR SHELLS &
>> Minimize overhead of compute (and overlays) ompuie | S SR e

>> Prove shell assembly model

> Build-to-order LinkBlaze! shell
>> 512 bit, bi-directional
>> RapidWright Pre-implemented modules

516MHz 620MHz (+20%)

kernels E
e xaei LN

1 LinkBlaze: Efficient global data movement for FPGAs (ReConFig 2017)

& XILINX

© Copyright 2019 Xilinx

' Just-in-time, Circuit Module Generators
OJe
®

GENERATORS

> Build modules on-demand
>> Placed and routed in seconds XA 2+3*X'5
>> Reusable and compose-able
>> Target spec performance

> Parameterizable Generators
>> Adder
>> Subtractor
>> Multiplier

> Expression Generator
>> |nvokes math generators
>> Bulilt to spec: 775MHz

el & XILINX

© Copyright 2019 Xilinx

' RapidWright SLR Crossing DCP Creator

» SLR crossing module from

scratch

>>Parameterizable

>>Closes timing at 760MHz

- Clk Period: 1.313ns

>>Routed clock, placed and routed

>>Runs in seconds

Page 28

This RapidWright program creates a placed and routed DCP that car
imported into UltraScale+ designs to aid in high speed SLR cross:

RapidWright documentation for more information.

Clk input net name]
Clock BUFGCE site name]
Clk net name]

Design Name]

Input bus name prefix]
Comma separated list of

Laguna sites for each SLR crossing]

[String: North bus name suffix]
[String: Output DCP File Name]
[String: UltraScale+ Part Name]
[String: Output bus name prefix]
[String: INT clk Laguna RX flops]
[String: South bus name suffix]
[String: INT clk Laguna TX flops]
[String: Clk output net name]
[Boolean: Print verbose output]
[Integer: SLR crossing bus width]
[Double: Clk period constraint (ns)]
[String: BUFGCE cell instance name]
[Boolean: Use common centroid]

GENERATORS

Description

Print Help

(default: clk in)
(default: BUFGCE X0Y218)
(default: clk)

(default: slr crosser)
(default: input)
(default: LAGUNA_XZYlZO)
(default: north)
(default: slr crosser.dcp)
(default: xcvu9p-flgc2104-2-1)
(default: output)
(default: GCLK B 0 1)
(default: south)
(default: GCLK B 0 0)
(default: clk out)
(default: true)
(default: 512)

(default: 1.538)
(default: BUFGCE inst)
(default: false)

© Copyright 2019 Xilinx

& XILINX

'Ongoing Work: C Code to Full Chip Accelerator in Seconds

Back-end
Data Flow compiler

>
Parser RAPID
‘ @WR/GHI
1

> RapidWright generator capabilities
UltraScale+ VU3P, 100% DSP utilization
Front-end C code parser still in development
Prototype back-end flow
Runs in seconds (37 seconds)
Achieves spec frequency (775 MHz)

> Future integration work:
SLR crossing generator - target 750 MHz
LinkBlaze (data movement) solution

e & XILINX

© Copyright 2019 Xilinx

' Leveraging Algorithmic Engines

» SAT Solver

>> Resolve difficult, localized congestion routing
— Finds solutions where Vivado cannot

>> RapidWright front-end to SAT solver enginet
» Future Work

>> Simultaneous SAT placement and routing
solution

>> |LP Solvers

— Potential for placement solutions

lFraisse, H., Gaitonde, D., A SAT-based timing driven Place and Route flow for critical soft IP (FPL 2018)

page 30 & XILINX

© Copyright 2019 Xilinx

How do | get started with E
RapidWright?

XILINX.

Wright in Your Browser

'Run R?pid r

& HelloWorld b4 +

»

< Cc

: Jupyter HelloWorld (autcsaved)

File Edit View Insert Cell Kerne Help

+ 3 & B 4+ ¥ MHRun B C W Markdown

In [4]: # Import RapidWright classes
from com.xilinx.rapidwright.design import
from com.xilinx.rapidwright.design import
from com.xilinx.rapidwright.design import
from com.xilinx.rapidwright.design import
from com.xilinx.rapidwright.design import
from com.xilinx.rapidwright.device import
from com.xilinx.rapidwright.router import

Create a new empty design
design = Design(“HelloWerld”,Device.PYNQ Z

Create cells and place them

v

Cell
Design
Net
PinType
Unisim
Device
Router

1)

lut = design.createAndPlaceCell("1lut”, Unisim.AND2, "SLICE_X18aylea/AsLUT™)

buttond = design.createAndPlaceIOB("buttond”, PinType.IN,
buttonl = design.createAndPlacelIOB("buttonl”, PinType.IN,
PinType.OUT,

leda = design.createAndPlaceIOB(" ladg”,

Wire up the AND gate to buttons and LEDs
net® = design.createNet("buttoné_IBUF™)
net®. connect(buttond, "0")

netd. connect(lut, "Ia")

netl = design.createNet("buttonl IBUF™)
netl.connect(buttonl, "0")
netl.connect(lut, "I1")

net2 = design.createlet("lut")
net2.connect(lut, "0")
net2.connect(leds, "I")

Route intra-site connections
design.routeSites()

Route inter-site connections
Router(design).routeDesign()

Write out the placed and routed DCP

"D19", "LVCMOS33")
"D28", "LVCMOS33M)
"R14", "LVCMOS33™)

@ https:;//hub.mybinder.org/user/clavin-xInx-rapidwright-binder-jéxzvjyn/notebooks/HelloWorldipynb @ % € Q e

Not Trusted

= | E]

Jython 2.7 ©

© Copyright 2019 Xilinx

RAPID
WRIGHT.

U er

& binder

& XILINX

' FPGA’19 Invited Tutorial Paper

>> 33

Build Your Own Domain-specific Solutions with RapidWright
Invited Tutorial

Chris Lavin and Alireza Kaviani
Xilirx Research Labs
San Jose, CA
chris.lavini@ndilime. com, alireza kaviani@xilime.com

ABSTRACT

Ag the complexity of programmable architer tures increases with
advances in silicon process technology, there is a growing need
to extract greater productivity and performance from the tools.
Due to their inherent reconfigurability, FPGAs are proving to be
vahable targets for more efficient domain-specific architec res.
However, FPGA implementation tools are designed for a broad set
of applicatioms.

In this paper we describe BapddWright, an open source frame-
work that enables customized implementations for Xilim: FPGAs
RapidWright enables implementation tools that can take advan-
tage of the great potentisl of domain-specific attributes—leading to
greater productivity and performance. The focus of this paper is to
provide an introductery reference of RapidWright and its use cases
so that others may be empowered to adapt their implementations
to their domain-specific applications.

CCS CONCEPTS

» Hardware — Reconfigurable logic and FPGAs; « Computer
I}'RQ‘I! o i fon — I i) i Ip 733

KEYWORDS

Diomain-specific, Open Source, FPGA, Xilime, Vivadn

ACM Referenze Format:

Chris Lavin and Alireza Kaviani. 2119, Build Your Own Domain-specific
Schuticnsw ith RapidWright. In The 219 ACW/FGDA International Synmpe-
siem on Fleld Programmable Gate Arrays (FPGA '19), February 24-25, 2019,
Sewmside, CA, USA ACM, New Yook, NY, US4, Article 4, 9 pages.
bittps:/fdoi.oog1001145/3260502 3250508

1 INTRODUCTION

RapidWright [1] is an open source platform with a gateway to
Hilim:*s back-end implementation tonls (Vivado) that raises the
implementation abstraction while maintaining the full potential of
advanced FPGA silicon. RapddWright works synergistically with
Vivado through design checkpoints (DCPs, see Figure 1) to enable
highly customizable implementations. Vivado can produce highly

Farmissicn to maks r hard copes efall ar part of this woek fr pecsanal o

clasroom us s grantad without fao providad that copies re not made or distributed

ﬁns::&otoommnml.llmmm 5 bear this notic e and tha full cikation

on the first paga. Copprights foT coemp onents of this wnrk awnad by oibars than tha

authior(s) must be honceed. Abstracting with crodit is parmitted. To copy sthareiss, o
o post on.

und/ora fea. LR,

FPGA "W, Fefruary J4-26 308, Saxnide, CA, US4

& 201 Copyright hald by the cwnac'authors). Publication cights licnsad fo Associa-

‘tion. For Computing Mi

ACM ISEN 978- 14500 5137-8/19/02 .. §15.00
ittpe v dol agg 10,1 1457328000 22000

Domain Specific
“Shell creator

or
“JIT assembler
or

Figure 1: Vivado and RapidWright DCP Compatibility

optimized implementations for key design modules to deliver the
highest performance. RapidWright can then replicate, relocate and
assemble these tuned modules to compose a complete application
and preserve high performance.

RapidWright's native gatew ay to Vivado also sets the ground-
work for an ecosystem aimed at further advancing FPGA tools, It
empowers arademic and industry resesrchers by combining the
commercial credibility of FPGA toals with the agility of an open
souree framework, leading to innovative solutions that might not
be feasible otherwise.

This paper serves as a supplemental reference tothe RapidWright
‘twtorial with an aim to provide some fundamentals sbout the frame-
work and introductory use cases. In the remainder of this paper we
describe RapidWright and its capabilities in Section 2, some exam-
ple use cases in Section 3 and conclude in Section 4. Supplementary
material on Xiling architecture is inchided in Appendix A to help
orient the reader regarding specific RapidWright constructs.

2 RAPIDWRIGHT STRUCTURE

RapidWright is imple mented in Java and distributed with a founda-
‘tional AFT library that provides access to design checkpoint (DCF)
files and Vivado-compatible device models. A high-level diagram
showing the organization of the project is shown in Figure 2. There
are three core Java packages (groups of classes) within RapidWight:
device, edif (logical netlist) and design (physical netlist) and this
section describes the purpoee and composition of each one.

Figura 5: Logical netlist view of

uses in certain situations ko prevent components inside the site
from being moved.

Routing nets inside of a ste (intre-site) is different from routing

A rel
mformation concerning intre-sile routing, Routing inside of a site
must account for placed cells, their type and contert. In general,
when constructing placed and routed logic, it can be beneficial to
compare S1teInst content from Vivado-genersted implementa-
tions to ensure correctness. This can be done by loading placed
and routed DCPs from ¥ ivad into RapidWright and querying the
respective 51 telnst objects to establish patterns for site wire and
3

Routing is accomplished inside a site through 51tePTPs, which
blish ing BEL BEL

(such as LUTS). The Sitelnst abject i RapidWright maintains
sile FIP usage. By default, all site PIPs are tumed off. If a s1tep1p

a particular physical net

[

Figare G: Physical netlist view of a particular physical net

i3 marked onar definition of an implementation. This obiect is unique to Rapid-
used Wright and s one of its enabling constricts that allows placed
‘and routed information to be preserved, elocated and replicated.
A the
26 Net iihin o s, It is similar
A Net in RapidWright ion to physi- DCP. however RapidWright
cally connect Many

tha net depicted in Figure 5. This figure shows the logical netlst
‘one physical net. However. the

ogical nets map o the same physical net, for example. consider compatible aras of the fbric.
A Rapis

th
5

Device
{Callection of SLRs) l |
SLR |
{(Super Logic Region)
FSR
(Faonz Sup Regan
Chock Regon)

Tile
(Collection of Sites)

Site
{Codection of BELs)

BEL
(Basic Element of Logic]

11 separs

PIPs PIeg
pinsource
are repre
abjects)
roating) i

i is des @

27 M
Avodule
a collecti

|| /I
EDIFPortins:

EE e T

e ge 0.8 <8 gan 0 0]

View

Ragid- Dovca esign

Waight 103 Vivado netlist

23 Design Package (Physical Netlist) BEL

Figure 11: Xilinx FPGA Architecture Hierarchy

ed o 5 the “placement” of the cell. Non-Jeaf cells represent hi-
fiy of the netist and do not require placement. Thus. when one
fe Vivado command place._dessgn. it isessentlally mapping
Jf el in the netlist to compatible and legal BEL sites.
[uting BELS are programmable muxes used to route signals
Jren BELs Routing BELS do not support any design elements
cells from the netlist do not nocupy routing BEL sites). How-
Jsome routing BELs do have optional inversions.

Figure 12: Intersite and Intrasite Routing Resources

BELs have inpat and output pins and configurable connections
thal connect an input Fin Lo an output pin. These BEL based canfig-
urable connections are called site PIPs (Programmable Interconnect
Points). Both logic BELs &nd routing BELS can have site PIPs. How-
ever,in the case of & logic BEL, the site must be unoccupied by a cell
for the site PIP to be usable. These site PIPs, when implemented in
logic BELS {such a5 a LUT). are called “route-thrus™ When routing
adesign, il is sometimes necessary o route through unused LUTs
(or other BELs) using site PIPs to complete a route.

to s a physical netlist or implementation. It contains al of the
primitive logical cell mappings to hardware, specifically the cell
to BEL placements and physical net mapping to programmable
nterconnect or routing.

‘The Design dlass in RapidWright is the central hub of infor-
‘mation for a design. It keeps track of the logical nellst, phy sical

tha it contains all the information necessary to create a DCP file

Figure 4: Shows mapping between BEL/Cell, Site/Sitelnst
‘and Device/Design.

2.5 Sitelnst
eniric

sjor object classes
found in the des1gn package

24 Cell (ABEL Instance)
At the lowest level, a RapidWright Cel1 maps a logical leaf cell
nst) toa BEL

. i Vivado s BEL o
(BELs and cells) The Stteinst keeps track of three major map-
pings/attributes

(1) Map of all cells o BELS (placements in site)

(2) Activated Site PIPs fintra-site routing)

(5) Nets to Site Wires {intra-ste routing)

)

he
eaf cell to which it maps. A cell lso meintsins the logical cell in

The sttetnst type using
i P =
‘RapidWright also preserves the sume Vivado Tixed"flag which is

phy

© Copyright 2019 Xilinx

& XILINX

' RapidWright Resources: www.rapidwright.io

) Xilinx/RapidWright: Build Custo

C @ Notsecure | www.rapidwright.io

) RAPID {'é} RapidWright Documentation — = X
WRIGHT

Marketplace Explore

@ Unwatch~ 31 ¥ Unstar | 45 Yrork 17

< C @ Notsecure | www.rapidwright.io/docs/index.html * € 0 ©

ADAPTING IMF
TOOLS TO YOU 9 ﬁ%’?é%-r Docs » RapidWright Documentation View page source

fiki Insights Settings

wright.io Edit

ases A1 3 contributors s View license

RapidWright Docs Crotenewtie | ko ies | Fndtie

RapidWright Documentation |

bm/Xilinx/RapidWright

e |ntroduction
o What is RapidWright? o e

o Why RapidWright? ——

o What about RapidSmith? :

Al Classes R chitecture Basics o Vivado and RapidWright K =00

' [Overview

& C © Notsecure | www.rapidwright.io/javadoc/ing

Fackages PREV NEXT FRAMES - 3
_ e Getting Started
com.xilinx.rapidwright.debug o - T 20 Q-
com_xilinx rapidwright design . .
com xilinx_rapidwright design blocks Packages [] F PGA Arl: h | tectu re Ba SICS
com e apianght design.ools T pting some of our settings to make group management Learn
| e o What is an FPGA? e
| womes B I) o
xilinx_rapidwright.d -
AbstractRouter o x! — rap! wrfg o] C P L_] VS. F P(JA Tags - Manage group - Manage members - Members - About &
AddSubGenerator com.xilinx_rapidwright.d
Arthmet Generstor com.xilinx rapiduright d o Lookup Tables (LUTs)
. - I this forum (you'll need to join first). RapidWright is an open source project from
BELClass com.xilinx.rapidwright.d
BELPin
BELPin.Direction com.xilinx.rapidwright.d o State Elements
BlockCreator il i i
com.xilinx_rapidwright.d . . — -
Dok o RapidWright Tu o Carry Chains
Blockinst com.xilinx_rapidwright.¢ =
BlockPlacer i o
BlockPlacer2 com.xilinx rapidwright.¢ m—— k o DSP Blocks
g:ﬂcigc_e”he com.xilinx.rapidwright.g requent
lockStitcher
BlockUpdater com.xilinx.rapidwright.g o B‘IOC k RA M S
BlockView - e — 7
BrowseDevice com-xflinx-rapicwright.I|g T PR . - - -
Cell il i i Wi
Colbin com.xfl- .rap!dwrfght.placer.blockplacer T B 6y Jakob Werzs
ClockRegion - com.xilinx.rapidwright.placer.handplacer o pynq Using RapidWright with a Mac
il e B nara bl o2 dam Sl Al e ik

>> 34 : _ e
© Copyright 2019 Xilinx 8 XI LINX

'Today After Lunch (1:45PM)
RapidWright FPGA 2019 Deep Dive Tutorial

Tutorial Segment
Hello, World fare
~
Create Netlist from Scratch fne
~

Pipeline Generator
Pre-implemented Modules: Part |

Pre-implemented Modules: Part |l

Probe Re-router jiee
;-u-"’
SAT Router sore
:'-r‘

Create and Use an SLR Bridge

>> 35 : = Jupyter Notebook Tutorial

Time

5 mins

10 mins

15 mins

15 mins

15 mins

20 mins

15 mins

25 mins

Purpose

Intro to RapidWright within Jupyter Notebook

How to build a netlist from scratch

How to generate a circuit in RapidWright
How to create a pre-implemented module

How to use and relocate pre-implemented modules

Fast probe routing on existing implementation

How to use a SAT engine to solve routing congestion

Combine Vivado and RapidWright generated citcuits

& XILINX

Conclude

22 XILINX

'Summary
OO

DS EO L

SHELLS &
FROM SCRATCH GENERATORS FROM VIVADO OVERLAYS

> Build routed circuits & reuse P&R circuits

> RapidWright enables:
Performance by 50%
Debug productivity >10X

> Leverage algorithmic engines (SAT, ILP, ...)

> www.rapidwright.io

>> 37

© Copyright 2019 Xilinx 8 XI LINX

http://www.rapidwright.io/

'RapidWright Enables DSA Compilers

D QP
O

Place & route

startups

cCIEVASID] I P GA compile
synthesis blatfo ompile
HLS + Open -
Source DSA combile
SDx, OpenCL
Domain
expertise +

open source

> Hard problems, let's work together
> Domain-specific optimizations
> Architecture exploration

> Empower those closest to the problem

Application
:IIIIIIIIIIIIIIIII: inDomainZ
|

A4

Application
in Domain
3

Application
in Domain 1

EEEEEEEREP

Front-end
Compiler

RAPID
WRIGHT.

Back-end
compiler

ﬁ

VIVADO!

XL INX
DEV/ICE

& XILINX

© Copyright 2019 Xilinx

Adaptable.
Intelligent.

22 XILINX

