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Abstract—The era of domain-specific computing has created an
environment that drives for the best performance possible from
silicon and tools. Novel and unique implementation strategies
for FPGAs that may have been infeasible in the past are now
sought after in the search of better performance or faster compile
time. The ability to optimize for domain-specific attributes in
FPGA implementations is now more important than ever and
both industry and research institutions need better ways to fully
harness the programmable potential of FPGAs.

This paper describes RapidWright, an open source framework
from AMD Research and Advanced Development, and how it
enables design implementation to be customized on commercial
FPGA devices. RapidWright enables strategies previously infea-
sible or impossible to designers and provides sufficient flexibility
to leverage domain-specific attributes in their applications for
the highest performance, compile-time, or timing closure pre-
dictability. We demonstrate how the RapidWright framework
has been a fundamental enabling factor in a variety of practical
research efforts that have led up to 30% higher quality-of-result
(QoR) and compile time improvements of 5× or greater across
a number of applications.
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I. INTRODUCTION

Computer architects are now widely subscribed to domain-
specific architectures as being the only path left for major
improvements in performance-cost-energy. As a result, future
compilers need to go beyond their traditional role of mapping
a design input to a generic hardware platform. Emerging
domain-specific compilers must subscribe to a broader view
in which compilers provide more control to the end users,
enabling customization of hardware components to implement
their corresponding tasks. Transitioning into this new design
paradigm, where control and customization are key enablers,
poses new challenges for such domain-specific compilers.

Today, generic vendor-specific backend EDA compilers are
the only available mechanism to realize a broad range of
applications in many domains. The necessity for commercial
tools to cover a broad range of applications often leads
to implementations that do not take full advantage of the
underlying hardware. Domain-specific compilers, on the other
hand, can potentially deliver near-spec performance by taking
advantage of both application attributes and architectural de-
tails. This issue is less pronounced for more generic computing

platforms such as CPUs due to leveraging open source as
an essential component of software development. However,
high quality EDA software has remained mostly proprietary.
Existing open source attempts do not produce results to be
useful at commercial scale. Addressing EDA customization to
achieve domain-specific compilers will require collaboration
from both industry and the open source community.

This suggests the need for a framework capable of inter-
facing between closed source vendor backend tools and open
source domain compilers. RapidWright [1] is an example of
such a framework that enables a new level of optimization and
customization for the application architect to further exploit
FPGA silicon capabilities focusing on a specific domain.
Several efforts have built on RapidWright in order to achieve
domain-specific optimizations for specific applications. For
example, RapidStream [2] demonstrates 30% higher perfor-
mance and more than 5× faster compile time for data flow
applications. The key enabler for the RapidStream domain
compiler is the split-compilation that was made possible for
such applications with a latency-tolerant front-end and design
entry.

RapidWright offers a broad set of capabilities in an open
source framework that provides the level of flexibility needed
to address the growing demand for more efficient and per-
formant implementations in a domain-specific era. Another
aspect of leveraging the domain-specific approach to EDA is
interoperability among other tools both from industry and the
open source community. For this reason, we helped develop,
prototype and implement the CHIPS Alliance FPGA Inter-
change Format [3]. This new exchange format is a way for
backend FPGA tools—both open source and proprietary—to
communicate partial FPGA design implementations as well as
provide all the information needed to build a custom backend
tool from scratch.

In the remainder of this paper, we describe some of the
major components and capabilities within RapidWright. We
also share some of the domain-specific implementation suc-
cesses that have been built on top of RapidWright’s framework
to improve compile time and/or performance. Ultimately,
we believe that there is still tremendous potential in FPGA
technology that can be unlocked through the use of domain-
specific tooling.



Fig. 1. The RapidWright Framework.

II. THE RAPIDWRIGHT FRAMEWORK

RapidWright is an open source framework that provides a
back-end interface to AMD-Xilinx devices that compliments
Vivado. Specifically, RapidWright can read and write design
checkpoint files (DCPs) or snapshots of a design implemen-
tation before, during, or after the place and route stages. It
also provides a rich set of APIs and higher level features to
optimize and build implementation flows not possible with
Vivado alone. By leveraging RapidWright, users are able to
achieve higher quality-of-results (QoR), faster compile times
and/or better timing closure predictability. RapidWright also
offers unique capabilities not currently offered by Vivado
such as fine-grained design compose-ability, replication and
relocatability and on-the-fly generation (no RTL needed) of
placed and routed circuits. This section describes the lower
level API sets that enable a set of capabilities and later we
will present how these capabilities can be used to together to
build full compilation strategies.

A. Fundamental APIs

Fundamentally, there are three categories of information
needed to place, route and manipulate a design that is to be
mapped onto an FPGA. RapidWright has three rich API sets
to satisfy the needs of these three categories: a device model,
a logical netlist model and a physical netlist model. The fine
details of how these APIs function is beyond the scope of this
paper and we refer the reader to additional resources [4] and
[5] for further details.

1) Device Model: The device model is the physical rep-
resentation of the FPGA device and all of its configurable,
user-facing resources that can be utilized to implement a
user’s design. It fully elaborates all device resources and

their spatial relationship to one another. Some examples of
resources found in a device model (but not limited to) are tiles,
wires, PIPs (programmable interconnect points, or switches,
that can connect two wires), BELs (basic elements of logic,
such as a LUT), sites and package pins. Device models in
RapidWright can be loaded explicitly (by device or part name)
or automatically, such as when loading a DCP. RapidWright
supports all device models available in Vivado and the corre-
sponding device .dat file is downloaded on-demand rather
than installed upfront.

2) Logical Netlist Model: The logical netlist model refers
to the synthesized netlist in which a user’s design has already
been mapped to UNISIM FPGA primitives. The primary file
format used to represent a logical netlist is EDIF (Electronic
Design Interchange Format) [6]. RapidWright is able to sup-
port hierarchical and both folded and unfolded representations
of a logical netlist. Generally, the logical netlist inside a DCP
is encrypted and so when designs are exported from Vivado to
RapidWright, the user will also need to run the Tcl command
write_edif to provide a readable netlist as RapidWright is
unable to decrypt encrypted designs.

3) Physical Netlist Model: The physical netlist is a flattened
version of the logical netlist that only describes how the
primitives and connections are mapped onto the device model.
The physical netlist consists of placement (how the leaf cell
primitives of the logical netlist are mapped or “placed” onto
device BELs) and routing (the set of configured interconnect
switches on the device that complete net connections in the
logical netlist).

B. An Open Timing Model

Access to detailed timing information for FPGA resources
is essential to achieving the highest performance. Yet, for
commercial FPGAs, much of this information is not published
or available. At the same time, deploying large, fine-grained
timing datasets adversely affects the speed of timing-driven
place and route algorithms. To remedy these challenges,
RapidWright includes an open timing model [7] that provides
a high fidelity, approximate timing model for UltraScale+
devices. The timing model is lightweight as to limit its memory
footprint and make it both nimble and fast to execute timing
lookups. It was validated on over 240 designs and includes
an intentional 2% pessimistic bias so that designs have a
high degree of timing sign off when loaded into Vivado.
The proposed model shows high fidelity to Vivado with a
Spearman’s ρ value of 0.99. Figure 2 shows an example of
the timing model performance on a modest PicoBlaze design
with a 2% pessimistic estimation.

The development and availability of the RapidWright open
timing model was instrumental in the development of a timing-
driven router called RWRoute. By making the model available
to the broader community, we empower users to extend the
capabilities, apply the same lightweight estimation techniques
to other architectures and extend the work for other domains.



Fig. 2. Critical Path Delay Timing Breakdown of a PicoBlaze Design Using
the Open Timing Model in RapidWright vs. Vivado.

C. RWRoute: A Fast, Timing-driven Router

One of the most time consuming steps of FPGA backend
compilation is routing a placed design using an FPGA’s
programmable interconnect resources. Typical commercial so-
lutions for FPGA routing have often been proprietary and are
heavily optimized towards a common goal of increased quality
of result (QoR). However, in the age of domain-specific com-
puting, compile time can become an increasingly important
factor. In order to address the runtime challenges of existing
FPGA routing solutions, RWRoute [8] was developed using
the RapidWright framework. RWRoute was able to leverage
the open timing model to provide timing-driven capabilities as
well as non-timing driven (wirelength) optimization goals. It
also has been augmented to route clock signals, static signals
(GND and VCC) as well as being able to perform partial
routing or finalize a partially routed design.

RWRoute was able to achieve geomean speedups of 4.9×
compile time speedup over Vivado for 200+ smaller designs
(2-8 kLUTs) with only a 10% QoR loss. For larger designs,
RWRoute is still able to maintain a runtime advantage over
Vivado by at least 20% on designs with 110k nets as shown
in Figure 3. RWRoute has proven to be an invaluable tool for
RapidWright-powered projects due to its open source nature.
It can be easily customized for domain-specific tasks and
optimized for runtime or niche implementation flows as we
will see in Section IV.

D. FPGA Interchange Format

Commercial FPGA development tools must focus on pro-
viding adequate support and performance across the full
range of application-specific domains where FPGAs are used.
Customized compilers, however, can often deliver superior

Fig. 3. Routing Runtime Scalability of RWRoute and Vivado.

performance for these application-specific domains by taking
full advantage of both the application-specific attributes and
constraints of the challenge, synergized with the FPGA’s
unique architectural capabilities.

Enabling such application-specific tools demands a common
interchange standard to allow interoperation between an FPGA
vendor’s back-end tools and the customized compilers. We
worked with Google [9] to develop such an interchange
standard called the CHIPS Alliance FPGA Interchange Format
[3]. This format defines standardized FPGA design and device
files with sufficient fidelity and architectural robustness to be
used by a wide range of design tools to perform tasks such as
placement and routing in a fully open source environment.

The FPGA Interchange Format promotes the free exchange
of solutions and customized strategies that can be leveraged
by our customers through this interoperability bridge as shown
in Figure 4. RapidWright therefore serves as an open-source
gateway into Vivado, laying the groundwork for a growing
ecosystem aimed at further advancing FPGA use through a
variety of application-specific, front-end design tools.

III. UNIQUE CAPABILITIES AND EXAMPLE USE CASES

AMD’s Vivado has a broad set of capabilities and is
optimized for a specific set of design criteria that is applicable
for the majority of customer scenarios. However, as we enter
the domain-specific era of compute, there is a growing need to
adapt tools and implementation strategies that take advantage
of domain-specific attributes. RapidWright provides the extra
level of flexibility needed to exploit these new opportunities
by providing capabilities that were not previously feasible
in Vivado alone. This section describes a few of the unique
RapidWright capabilities available to users of the framework.

A. Optimize, Replicate and Relocate Placed and Routed Logic

Often times when trying to accelerate an application on
an FPGA, a specific computation or routine is parallelized
and reused many times. However, the conventional FPGA
compilation flow may not always take full advantage of this
optimization opportunity. One of RapidWright’s key features
is the ability to preserve, replicate and reuse placed and routed
circuitry in the form of a pre-implemented module.

Suppose you wanted to build a programmable accelerator
array with hundreds of instances of the core processing ele-
ment. The performance (without complicated clocking solu-



Fig. 4. FPGA Interchange Format Enabling Access to Broader Open Source Ecosystem.

tions) would be limited to the slowest implementation of each
processing element. A conventional approach would simply
instantiate the processing element in a generate statement
in Verilog and let the tools synthesize, place, and route
each processing element individually. This causes the place
and route solution to be solved uniquely hundreds of times,
generating a broad distribution of timing closure solutions for
each instance.

With RapidWright, we can use a tool called
PerformanceExplorer which will take a single
synthesized instance of the processing element and place and
route it hundreds of times in a variety of ways to find the best
implementation that closes timing at the highest frequency
that can also be replicated and relocated many times across
the FPGA fabric. Although FPGA fabric has a high degree
of regularity, there are some exceptional cases that make
relocation of placed and routed logic more complex and
RapidWright is built to accommodate these complexities.

Figure 5 shows a fully placed and routed accelerator array
composed of 396 PicoBlaze 8-bit microcontrollers that have
been optimized, replicated and relocated into reusable loca-
tions and stitched together on an UltraScale+ VU3P. This array
was built using only three instances of a PicoBlaze (each one
uses a BlockRAM and each column of instances is centered
around that resource). The lowest timing closure of the three
instances is 374 MHz and the final array is capable of running
at 365 MHz without significant effort.

B. Generate Placed and Routed Logic On-the-fly

RapidWright’s ability to create fully placed and routed
circuits from scratch enables a new class of design we
call generators. Several parameterizable circuit generators are
included with the RapidWright distribution. One significant
example is the parameterizable SLR crossing generator which
can produce a placed and routed SLR crossing DCP solution
within a few seconds. This SLR crossing generator targets

Fig. 5. Placed and Routed Accelerator Array of 396 PicoBlaze Elements
Replicated and Relocated by RapidWright.

UltraScale+ devices as they have the architectural capabil-
ities that enable clocking techniques that achieve near-spec



(>700MHz) performance (UltraScale and Series 7 devices, do
not possess these capabilities).

The generator will create pairs of flip flops in a netlist for
each crossing signal and will place them at the appropriate
Laguna sites to leverage the dedicated super long line (SLL)
interconnect paths. As mentioned in [1], using both dedicated
RX and TX Laguna site flops will often produce hold time
violations. RapidWright is able to circumvent this issue by
routing the clock in such a way that all TX and RX flops are
connected exclusively to the same clock arm. This enables a
tuning of the clock delay at the common leaf clock buffer for
each group of crossing signals in each direction respectively.

Additionally, the SLR crossing generator can potentially
create a custom clock root for each SLR crossing group
(crossings in the same clock region) to minimize the inter-
SLR compensation timing penalty. By fabricating the netlist,
placing the flops onto the dedicated RX and TX Laguna sites
and custom routing the clock to tune leaf clock buffers and
create clock roots, the generator is able to create a placed and
routed DCP of an SLR bridge in a few seconds.

C. Turn Timing Closed Logic into a Reusable Shell

Often in FPGA development, a desirable timing-closed
implementation is only achieved after several iterations or
many parallel implementation runs of a design. Elusive timing
closure can be caused by one or a few stubborn modules
in a design that have tight constraints or a large number of
moderately difficult paths that have a lower probability of
timing closure on any given run.

One advantageous strategy to improve timing closure suc-
cess can be to preserve and enable reuse of a known good
implementation of the stubborn logic. By preserving the
implementation, place and route tools can (hopefully) avoid
rediscovering difficult timing closure and simply focus on the
other logic.

Typically, the challenge in preserving and reusing timing
closed logic is that it requires the use of area constraints
(pblocks in Vivado) to spatially separate the logic to be
preserved from the logic that will be changed over time. This
presents another set of limitations and constraints of its own
(such as the need for area constraints to be rectangular and
exclusive) that are often undesirable. RapidWright is able to
overcome this challenge by allowing the design to be placed
and routed without area constraints and then carefully extract
and remove the logic after it has been implemented. Vivado is
currently not able to perform this extraction correctly and thus
RapidWright is able to offer a solution that provides greater
flexibility and the opportunity to preserve timing closed logic
efficiently.

Figure 6 demonstrates how the dynamic logic (portion of the
design to change over time) is removed to create a reusable
shell that has its placement and routing locked down. The
implementation tools are unable to make any changes to the
static logic portion of the design and Figure 6c shows how
new logic can be placed and routed on top of the existing

Fig. 6. Creation of a Timing-closed RISC-V Shell.

timing-closed static logic of the shell without disturbing any
of the implementation.

IV. COMMUNITY DEPLOYMENTS

Several research efforts have made use of RapidWright to
improve compile time and/or performance of the placed and
routed implementation. This section provides a brief overview
of some of those efforts and how the use of RapidWright was
an instrumental part of their success.

A. RapidLayout: Fast Hard Block Placement Using an Evo-
lutionary Algorithm

Zhang et al. [10] [11] found they could accelerate placement
of hard block heavy designs (those using many DSPs and
BRAMs) by employing an evolutionary algorithm to quickly
select hard block placement. The designs being implemented
were neural network accelerators with 480 replicated convo-
lution blocks assembled in a systolic processing array. To
implement the design, They were able to formulate hard
block placement as a multi-objective optimization problem
in the RapidWright framework and then hand off the rest
of the placement problem to Vivado. Due to the replication
found in the design, they were also able to take advantage



of RapidWright’s ability to replicate and relocate logic by
targeting a single SLR (super logic region, a single die of
a multi-die FPGA device) and replicate it to other SLRs. This
process was quite fast and led to speedups of 5-6× faster than
a conventional Vivado flow that required weeks-long effort to
create several placement constraints in order for the design to
be fully implemented.

B. RapidRoute: Rapid Assembly of Communication Structures

Liu et al. [12] developed a customized router utilizing the
RapidWright framework that was tuned for network-based
communication structures (1D rings, torii, and meshes) within
the FPGA fabric. Using a combination of optimization tech-
niques, such as exploiting symmetry, multi-threading caching
of routed structures and tiling hueristics, Liu et al. was able
to route these network structures up to 8× faster than the
conventional Vivado router and maintain a QoR within 0.2 ns
of the Vivado result.

C. RapidStream: Faster Compilation and Higher Performance

Guo et al. [2] developed a novel, open source compilation
flow called RapidStream that leveraged a class of latency-
insensitive HLS designs to perform high-level partitioning
and pipelining between partitions. By being able to decouple
different parts of the HLS dataflow designs, RapidStream is
able to perform placement and routing of each partition in
parallel. RapidWright was able to quickly stitch all of the
partitioned parts of the design into a single implementation
as shown in Figure 7. By taking advantage of the latency
insensitive nature of the HLS designs, RapidStream was able
to compile implementations 5-7× faster and achieve 30%
better QoR than the conventional Vivado flow. The benefits
of RapidStream demonstrate that there is significant potential
for FPGA backend improvement when the tools are enabled
to take advantage of domain-specific attributes.

In follow on work from Guo et al. [13], RapidStream 2.0
was able to take advantage of RWRoute [8] by customizing
its partial routing capability to be timing-driven and enable
the tool to expand the routing bounding box at runtime. In
routing the connections between partitions, the flip-flops (or
anchor registers) in between, often would result in congestion
that would cause costly rip-up and re-routing scenarios. The
RapidStream 2.0 customized version of RWRoute was able to
provide solutions with minimal rip-up of existing routes and
could run up to 4× faster than a single-threaded Vivado run.

V. RELATED WORK

There have been a number of open interfaces to FPGA
vendor tools in the past. The Xilinx Design Language (XDL)
[14] provided an open design file format released with ISE
(predecessor to Vivado). XDL provided unprecedented access
to placement and routing information that made building
custom CAD tools possible. Open source projects and tools
such as RapidSmith [15], Torc [16], and ReCoBus-Builder
[17] capitalized on the XDL interface to increase productivity.

Fig. 7. RapidStream Stitching Process Accelerated by RapidWright.

Altera (now part of Intel) also released the Quartus University
Interface Program (QUIP) [18] with similar attributes to XDL.

XDL and QUIP are no longer supported by the latest vendor
tool suites Vivado and Quartus Prime. Instead, Xilinx’s Vivado
utilizes a new Tcl-based interpreter. This allows users to per-
form customized tasks by writing Tcl scripts. For small tasks,
this is not a problem. However, as task size and complexity
grows, productivity is limited by Tcl interpreter performance.
For example, Tincr [19] and the Vivado Design Interface (VDI)
[20] have extended RapidSmith to be compatible with Vivado
by replacing XDL with Tcl interface routines. However, design
import by this method is constrained by the low speed of Tcl
commands, limiting feasibility to only the smallest designs.
Townsend [20] reports a design of ˜54K LUTs targeting an
xc7a100t (Artix 7) takes ˜2.5 hours to import into Vivado (6
LUTs/second). By rough comparison, RapidWright writes a
210K LUT DCP targeting an xcvu190 (Virtex UltraScale) in
91 seconds. Vivado reads the DCP in 303 seconds, for a total
import time of 394 seconds, or 533 LUTs/second, 88× faster
than VDI. By avoiding Tcl and using DCPs, RapidWright
enables a more productive interface.

VI. CONCLUSION

We believe the field of FPGA backend tooling is ripe with
optimization opportunities and we have created RapidWright
to help take advantage them. This paper has described notable
works such as RapidLayout and RapidStream that domain-
specific optimization for backend tooling can lead to faster
compile times and/or higher QoR implementations.

There exists a growing and innovative community for FPGA
backend tooling that will co-exist with the RapidWright frame-
work. To help foster advances and interoperability with these
tools, RapidWright fully supports the CHIPS Alliance FPGA
Interchange Format [3] as a standardized way to exchange
intermediate FPGA implementation results and build tools
amongst both open source and industry participants alike.
We invite both industry and academic researchers to help us
move forward the domain-specific efforts of FPGA backend
technology.

For more examples, documentation, tutorials and resources
on RapidWright, please visit www.rapidwright.io.

http://www.rapidwright.io
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