
RapidStream: Parallel Physical Implementation of
FPGA HLS Designs

Licheng Guo1, Pongstorn Maidee2, Yun Zhou3, Chris Lavin2, Jie Wang1, Yuze Chi1, Weikang Qiao1,
Alireza Kaviani2, Zhiru Zhang4, and Jason Cong1

1University of California, Los Angeles 2Xilinx, Inc. 3Ghent University 4Cornell University
{lcguo,cong}@cs.ucla.edu

ABSTRACT
FPGAs require a much longer compilation cycle than conventional
computing platforms like CPUs. In this paper, we shorten the overall
compilation time by co-optimizing the HLS compilation (C-to-RTL)
and the back-end physical implementation (RTL-to-bitstream). We
propose a split compilation approach based on the pipelining flex-
ibility at the HLS level, which allows us to partition designs for
parallel placement and routing then stitch the separate partitions
together. We outline a number of technical challenges and address
them by breaking the conventional boundaries between different
stages of the traditional FPGA tool flow and reorganizing them to
achieve a fast end-to-end compilation.

Our research produces RapidStream, a parallelized and physical-
integrated compilation framework that takes in an HLS dataflow
program in C/C++ and generates a fully placed and routed imple-
mentation. When tested on the Xilinx U250 FPGA with a set of
realistic HLS designs, RapidStream achieves a 5-7× reduction in
compile time and up to 1.3× increase in frequency when compared
to a commercial-off-the-shelf toolchain. In addition, we provide
preliminary results using a customized open-source router to re-
duce the compile time up to an order of magnitude in the cases
with lower performance requirements. The tool is open-sourced at
github.com/Licheng-Guo/RapidStream.

CCS CONCEPTS
•Hardware→High-level and register-transfer level synthe-
sis; Physical design (EDA).

KEYWORDS
Parallel, Placement, Routing, FPGA, HLS, Dataflow

ACM Reference Format:
Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze
Chi, Weikang Qiao, Alireza Kaviani, Zhiru Zhang, and Jason Cong, 2022.
RapidStream: Parallel Physical Implementation of FPGA HLS Designs. In
2022 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’22), February 27–March 1, 2022, Virtual Event, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3490422.3502361

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9149-8/22/02.
https://doi.org/10.1145/3490422.3502361

1 INTRODUCTION
FPGA compilation techniques have traditionally been adopted from
the EDA industry, where designers have higher tolerance of a long
turn-around time. However, this significantly impedes the adoption
of FPGAs by the computing industry, where software programmers
are used to a much shorter compile cycle [38].

One general approach to speeding up FPGA compilation is to
utilize multi-core CPUs or GPUs to parallelize the CAD algorithms,
such as logic synthesis [18, 19], placement [1, 15, 20, 42–44], and
routing [26, 27, 30, 54, 56, 59, 80]. However, many important algo-
rithms used in the FPGA CAD toolflow are inherently sequential.
Moreover, the slowest steps of the FPGA physical compilation ex-
tensively involve timing optimizations. Since optimizing timing
typically requires global knowledge of the designs, it further in-
creases the difficulty of parallelization. In Figure 1, we profile the
CPU utilization of a 14-hour FPGA compilation task by the com-
mercial Xilinx Vivado tool suite. As the figure shows, Vivado only
uses 2.1 cores on average when attempting to close timing.

0

2

4

6

8

0 55 110 164 219 274 329 383 438 493 548 602 657 712 767 821 876

C
or

e

Synthesis Placement Routing

Time(min)

10

15

20

25

1 2 3 4 5 6 7 8

H
ou

rs

Number of Threads

Figure 1: The upper figure shows the number of active CPU cores
when implementing a CNN benchmark by Vivado (8 threads) on
a 56-core server. The total implementation process takes about 14
hours, and with an average CPU utilization of 2.1 cores. The lower
figure displays the runtime as we increase the number of threads.

Another approach to fast FPGA compilation is splitting thewhole
application into several partitions and then compiling different parts
in parallel. A new challenge naturally arises here — how to achieve
timing closure with many inter-partition nets? Given an RTL design
or a netlist, it is relatively easy to partition the design and achieve
timing closure within each partition, but it is difficult to achieve
good timing on the inter-partition nets. Either we perform global
cross-partition optimizations iteratively at the cost of high runtime
overhead, or we sacrifice the timing quality of inter-partition nets
for runtime efficiency, rendering the acceleration less meaningful.

Despite these challenges, the maturity of FPGA HLS tools in re-
cent years brings new opportunities to address the timing problem

http://github.com/Licheng-Guo/RapidStream
https://doi.org/10.1145/3490422.3502361

Please Do Not Distribute

13

HLS compilation

Phase 1: Partitioning

Phase 2: Parallel Compilation

Phase 3: Stitching

Input: HLS Dataflow Designs

Output: Fully Routed Checkpoint

Bi-partition Floorplanning

Floorplan Legalization

Global Routing

Invert-Clock Pipelining

RTL Hierarchy Rebuild

[*] Synthesis

[*] Initial Placement

[*] Anchor Placement

[*] Placement Optimization

[*] Slot Routing

Global Clock Routing

Die-Level Netlist Stitching

Die-Level Preserve Routing

Multi-Die Netlist Stitching

Final Rule Check

Overall Flow Phase 1: Partitioning Phase 2: Parallel Compilation
[*] marks the parallel steps

Phase 3: Stitching

HLS Scheduling & Binding

RTL Generation

Logic Synthesis

Floorplanning

Detailed Placement

Global Routing

Detailed Routing

HLS Scheduling & Binding

Floorplanning into Islands

Inter-Island Routing & Pipelining

Inserting Anchor Registers

RTL Generation

[*] Island Synthesis

[*] Island Placement

[*] Anchor Placement

[*] Island Placement Opt.

Route Clk Trunk; Lock Buffer

Island Merging

Clock Tree Merging

Routing Conflict Resolution

Conventional CAD Stack

Phase 1: Partitioning Phase 2: Parallel Compilation Phase 3: Stitching

Phase 1: Partitioning

Phase 2: Parallel Compilation

Phase 3: Stitching

Input: HLS Dataflow Designs

Output: Fully Routed Checkpoint

Overall Flow

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S12

S13

S14

[*] Island RoutingS11

Figure 2: An overview of our RapidStream workflow. We use [*] to denote a parallelized step.

Please Do Not Distribute

17

Die (SLR) Boundary

Clock Region

Cross Die Wire
(SLL)

Register
(Laguna)

Alveo U250

Phase 1:
Partitioning

Clock
Source

PE

PE

PE

PE

PE

Input dataflow design
in C/C++

PE

PE PE

Phase 2:
Parallel

Compilation

Each island separately
placed & routed

Phase 3:
Stitching

All islands stitched
together

PE PE

PE PE

PE

PE PE

PE

PE

anchors

Partitioned RTL that fits into
the physical islands

Figure 3: Illustration of results obtained in different phases. In the final output, the orange part shows the anchor registers, the cyan part
shows the implemented partitions.

of inter-partition nets. Since the input design for HLS is written in
untimed high-level languages, the compiler has the flexibility to
introduce additional pipelining if needed before generating the opti-
mized RTL. Therefore, one may ask if we can couple the pipelining
flexibility of HLS with the split compilation approach, and if we can
first partition an untimed HLS design for parallel implementation,
then pipeline the inter-partition nets for timing closure?

In this work, we propose RapidStream, a split compilation flow
featuring tight integration of HLS-level pipelining and physical
design to accelerate the end-to-end FPGA compilation. As illus-
trated in Figure 2, our method includes three major phases. During
the partitioning phase, we organize the FPGA device as a mesh of
disjoint islands and floorplan a dataflow design into the islands; we
then utilize the flexibility of HLS to insert pipeline registers into
the inter-island nets, which we call anchor registers. The anchor
registers provide crucial timing isolation between islands to en-
able parallel implementation. Finally, we stitch together the layout
results of each island to generate the complete implementation.

Compared to the prior arts that also employ a split compilation
approach [62], RapidStream has several distinct characteristics.
First, we achieve full automation while [62] relies excessively on
manual inputs, including design modification, floorplanning, pin
assignment, etc. Second, we achieve a clock frequency close to
400 MHz but [62] only reports a frequency of 187 MHz. One of
the key differences is that [62] relies on a fixed pre-routed overlay
structure to isolate the islands, but at the expense of flexibility and
timing quality. In contrast, RapidStream can exploit design-specific
optimizations without using a pre-configured overlay, which helps
improve timing. We will provide a detailed comparison in Section 8.

Our key technical contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose
an automated, parallelized, and physically-integrated flow
to map HLS dataflow designs into a fully placed and routed
FPGA implementation while achieving fast timing closure.

• We identify and address several technical challenges for a
practical split compilation flow. Specifically, we propose new
and effective methods for (1) inserting pipeline registers and
optimizing their placement at the latency-tolerant borders
of partitions, (2) clock management in parallel routing, and
(3) efficient island stitching and routing of inter-island nets.

• Our evaluation shows that the proposed approach signifi-
cantly increases the degree of parallelism of FPGA-targeted
split compilation. RapidStream uses ∼26 cores on average,
whereas a commercial CAD tool only utilizes about two cores
on average. As a result, we achieve an end-to-end speedup
of 5-7× over the commercial tool. Additionally, we achieve
an improvement in frequency by up to 1.3×.

2 PRELIMINARIES
2.1 Problem Scope
RapidStream focuses on HLS dataflow designs. By our definition, a
dataflow design consists of (1) a collection of processing elements (PE)
working in parallel and (2) a set of FIFOs that connect the commu-
nicating PEs. Each PE can be arbitrarily complex internally, but it
must send or receive data through FIFO interfaces.

2.2 Organization of the FPGA Fabric
To facilitate the split compilation, we divide the FPGA fabric into
two types of regions. As illustrated in Figure 4, these regions in-
clude (1) large disjoint islands (in blue) that are equally sized and (2)
thin columns/rows of anchor regions (in green) between adjacent is-
lands. Here we define an island as a square-shaped region reserved
for (a subset of) the user logic; we further require that different
islands are non-overlapping. Meanwhile, the anchor regions are
reserved to place the anchor registers (in orange) needed for inter-
island communications; each inter-island connection is equipped
with one anchor register, which isolates the inter-island timing
paths.

Note that we need to distinguish the anchor regions located at
die boundaries. The Xilinx multi-die FPGAs have discrete channels
for die-crossing signals. To facilitate timing closure, the anchor
registers will be placed in the die-crossing channels to bridge the
islands that are on different sides of the die boundary (see Figure 4).

Die
boundary

Die-Crossing
Channels

Also used as
anchor region

Anchor region

Anchor
registersIsland

……

……

Figure 4: Organization of the FPGA device.

2.3 Flow Overview
Figure 3 shows the input and output of each phase of our proposed
workflow. In Phase 1, we take in an HLS dataflow design and floor-
plan it to the disjoint islands (steps 𝑆1 and 𝑆2 in Figure 2). We take
advantage of the elasticity of dataflow designs to ensure that every
inter-island connection is pipelined with an anchor register (𝑆3 and
𝑆4). This provides timing isolation that is crucial in the later parallel
placement and routing.

Phase 2 performs parallel placement and routing of the disjoint
islands and inserts the anchor registers. In the placement step (𝑆7-
𝑆9), we propose to iteratively co-optimize the placement of anchors
and islands since they are interdependent. In the routing step (𝑆10-
𝑆11), we propose a clock management scheme to ensure that the
clock skew is consistent when the islands are routed and later
stitched together. Without this step, we will run into hold violations
after stitching.

In Phase 3, we implement a stitcher using the RapidWright frame-
work [39] to stitch the physical netlists of post-routing islands to-
gether (𝑆12, 𝑆13). Although the nets inside each island remain legal
after stitching, conflicts may arise among the inter-island anchor
nets. This is a routing problem unique to our flow, and we propose
a lightweight method to resolve the potential routing conflicts (𝑆14).
Compared to the full-fledged commercial router, we achieve a 4×
speedup on average while retaining nearly the same setup slacks.

3 PARTITIONING
This section describes steps 𝑆1-𝑆5 of the partitioning phase of Rapid-
Stream, as shown in Figure 2.

3.1 Problem Description
In this phase, we exploit the pipelining flexibility of HLS to trans-
form the design into a parallelization-friendly structure. We first
discuss what features are needed in later phases that parallelize the
physical implementation of islands.
Objective 1: Non-overlapping partitioning – Since we aim to paral-
lelize the physical implementations of different islands, each island
is required to host a unique and non-overlapping partition of the
original design.
Objective 2: Pipelined inter-island connections – To facilitate the
timing closure on the inter-island nets, we want each inter-island
connection to be pipelined with an anchor register.
Objective 3: Direct neighbor connections – We further enforce
that each island only has direct connections with adjacent islands.
This property is key to parallelizing the placement and routing
process.

3.2 Approaches
Next, we introduce how RapidStream partitions and transforms the
original dataflow design to satisfy the above-mentioned objectives.
Mapping PEs to Islands (𝑆2). To achieve objective 1, we exclu-
sively assign each PE to one island. The assignment problem is
formulated as follows:

The input dataflow design is represented as a graph 𝐺 (𝑉 , 𝐸),
where each vertex 𝑣 ∈ 𝑉 represents one PE; each edge 𝑒𝑖 𝑗 ∈ 𝐸

represents an inter-PE FIFO connection between 𝑣𝑖 and 𝑣 𝑗 . Given
an array of islands that has 𝑁 rows and𝑀 columns, the goal is to
map each 𝑣 ∈ 𝑉 to one unique island such that the resource of each
island is not overused and the total wirelength is minimized. We use
the weighted Manhattan distance to calculate the total wirelength:∑

𝑒𝑖 𝑗 ∈𝐸
𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ × (|𝑣𝑖 .𝑟𝑜𝑤 − 𝑣 𝑗 .𝑟𝑜𝑤 | + |𝑣𝑖 .𝑐𝑜𝑙 − 𝑣 𝑗 .𝑐𝑜𝑙 |) (1)

where 𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ is the bitwidth of the FIFO between 𝑣𝑖 and 𝑣 𝑗 and
each 𝑣 is assigned to the 𝑣 .𝑐𝑜𝑙-th column and the 𝑣 .𝑟𝑜𝑤-th row.

The rationale behind the formulation is that a shorter wirelength
results in a lower latency overhead. Our problem is typically small
in size since an HLS design usually only instantiates up to a few
thousand PEs. Hence we use integer linear programming (ILP)
to formulate and solve a top-down partitioning-based placement
problem in an iterative manner. Notably, the placement problem is
similar to the ones described in several prior works [2, 22, 28, 47].
Global Routing & Pipelining Inter-Island Connections (𝑆3).
Before we pipeline the connections between non-adjacent islands,
we need to first determine which intermediate islands the connec-
tions will go through. Essentially, we need to first solve a routing
problem at the island level. Next, we insert pipeline registers in
the islands that the connection passes through. As an example, Fig-
ure 5(A) shows the potential routes (𝑃1, 𝑃2, 𝑃3) for an connection
between two non-adjacent islands.

The main constraint in this routing problem is the number of
available flip-flops (FFs) in the anchor regions. Recall in Figure 4 that

FF

 =
 5

FF = 5

P1
P2

P3

Distant Connection Island-level routing & Pipelining

width =4

Island 1 Island 2

Island 3

(A) (B)

Figure 5: (A) three potential routes for a connection. (B) Each anchor
region (in green) only has 5 Flip-Flops, so the two connections (both
of width 4) cannot go through the same anchor region.

we reserve a thin region between islands to hold the anchor registers
for inter-island nets and each inter-island net has an anchor register.
Therefore, when routing the connections at the island level, we
must ensure the participating anchor regions have sufficient FFs for
pipelining all the nets passing through, as illustrated in Figure 5(B).

Since the number of islands being mapped to is typically small,
we again formulate the problem in ILP. For each connection, we
generate all potential routes with the shortest Manhattan distance
that have at most two bends. For each anchor region between a pair
of adjacent islands, we add a constraint to ensure that the number
of passing-through nets is no greater than the available FFs. We also
assign a cost to each route based on the average resource utilization
of the passing islands. The ILP is set up to minimize the total cost
in this path selection problem.

Inserting Anchor Registers (𝑆4). To facilitate timing closure and
inter-island routing, each island will register all input/output sig-
nals. Figure 6 shows how we insert anchor registers into the inter-
island nets between adjacent islands. We leverage an almost-full
FIFO which asserts the full signal before the FIFO is actually full.
This signal increases tolerance of the round-trip latency between
adjacent islands, which allows us to add a pipeline register without
causing an overflow.

5

almost
full

wr_en

wr_data

full

wr_en

data

empty

read

data

PE PEFIFO

Anchor region

Island 1 Island 2

Anchors

Register each
IO of the island

Figure 6: Inserting anchor registers.

Note that we choose to use the ILP formulations because they
are sufficiently fast and scalable for today’s HLS designs and FPGA
devices. This is validated by our experiments in Section 7. For future
FPGA designs that may become much larger, we can incorporate
other well-known techniques such as multi-level placement [6] and
hierarchical routing [68] to handle the increased complexity.

4 PARALLEL PLACEMENT
Phase 1 produces an optimized version of the RTL that is floor-
planned to the island regions and anchor regions (Fig. 4). In step 𝑆2,
we determine which PEs are assigned to each island region; and in
step 𝑆3 we compute which anchor registers that each anchor region
accommodates.

In Phase 2, we first synthesize the RTL of each island into the
netlist representation (𝑆6). As all islands are non-overlapping, we
are able to run logic synthesis for all islands in parallel.

Next, we place all island regions and anchor regions in parallel
based on the previous floorplanning (𝑆7-𝑆9).

4.1 Iterative Placement of Anchors and Islands
Compared to logic synthesis, it is more challenging to parallelize
the placement step. Two neighbor islands that are independently
placed should have their interface properly aligned. This requires
the separate placer processes to properly synchronize on inter-
island connections.

We adopt an iterative approach to gradually align the interfaces
of separately-placed islands by utilizing the anchor regions between
islands. Figure 7 sketches the main ideas of our approach. The
intuition is that we lock the placement of all islands and then
incrementally re-place the anchor regions, then alternate their roles
in the next iteration.

Lock the placement
of anchorsBlue box: allowed

area for the PEs

Green boxes: anchors could
be placed anywhere inside

Lock the placement of
islands at the two sides

Re-place the anchors
between two islands Refine the placement

of the islands

Iteration 1:
Initial placement

of islands

Iteration 2:
Place the anchors

between island pairs

Iteration 3:
Adjust island

placement

...

Figure 7: Demonstration of the iterative placement.

Iteration 1 (𝑆7). In the first iteration, we determine an initial place-
ment of the islands. To place an island by itself, the placer needs
the locations of all anchors around the island, which are unknown
at the time. So we only impose a partial constraint that each anchor
should be within the anchor region on its corresponding side of the
island.
Iteration 2 (𝑆8). With the initial placement of each island, we
compute the exact locations of the anchors between the islands
to connect the inter-island nets. This step is also carried out by
parallel placer processes. Each process handles a pair of adjacent
islands and places the anchors in between to best connect both
sides. We further elaborate this step in Section 4.2.
Iteration 3 (𝑆9).We fine-tune the placement of islands based on the
exact anchor locations. Since the resulting anchor locations from
the first two iterations may differ, iteration 3 further refines the
placements of the islands to best match the latest anchor locations
from iteration 2.

Through the three iterations, all islands are placed in a parallel
manner. It is possible to repeat iteration 2 (𝑆8) and iteration 3 (𝑆9)
to further improve the overall timing quality. However, our exper-
iments indicate that applying them just once already achieves a
post-placement frequency of 400 MHz.

4.2 Anchor Placement by Min-Cost Matching

Motivation. While we use the standard placer for iterations 1 and
3, we formulate the anchor placement problem (iteration 2) as a
min-cost matching problem. Iteration 2 places the anchors based on
the placement of the islands on the two sides. First, since the anchor
region is very thin1, it is effectively a 1-D placement problem and
the solution space tends to be small. Second, using the standard
placer would incur unnecessary overhead in compile time as it is
optimized towards general situations. Finally, we need control in a
finer granularity to make sure that all anchors are exactly inside
the feasible regions.

A

B

C

D

src of
anchor 1 sink of

anchor 1

src of
anchor 2

sink of
anchor 2

A B C D

Anchor 1 1 1 2 3

Anchor 2 4 3 2 1

Synthetic cost of placing an anchor to a Flip-Flop

4 potential Flip-Flops for anchors

island 1

FF-1 FF-2 FF-3

clock

0.5 ns
delay

3 ns 2 ns

island 2

Figure 8: Illustration of the anchor placement formulation

Method. We propose a simple yet effective distance-driven place-
ment formulation specifically for iteration 2 (𝑆8), which can achieve
a similar timing quality compared to a standard placer but with a
much shorter running time. Given an anchor, we assign a heuristic
value for each FF in the anchor region representing the cost to
place the anchor onto that FF. Then we minimize the total cost
of placing all anchors. This formulation is a min-cost matching
problem that can be solved in polynomial time [7]. Specifically, we
formulate the problem in linear programming (LP), which in this
case guarantees integer solutions because the constraint matrix is
totally unimodular [34].

We use a heuristic method to determine the cost function. To
place an anchor onto an FF, the cost consists of two parts: (1) the
total wirelength from the anchor to the source and sink cells; (2)
the wirelength difference between the longest and the shortest net
of the anchor. We sum the two parts with empirical weights. This
distance-based heuristic will push the anchors close to their source
and sink cells and avoid being too close to one cell but far away
from the other.

Consider the example in Figure 8, where we need to place two
anchors to four potential FFs (A, B, C, and D) between the islands.
Since the source and sink of anchor 1 are at the top, A has a smaller
cost than others. Likewise, D has the smallest cost for anchor 2.

Our LP placement scheme for the anchors is on average 20×
faster than the commercial placer and the timing quality is similar.

5 CLOCK ROUTING
5.1 Problem Description
After we finalize the placement of the islands and anchors, we next
aim to route the islands in parallel. Since all inter-island connections
are anchored, we only need to route each island to connect to its
surrounding anchors. However, we need to take special care of the
clock signal because it is a global net that fan-outs to all islands.

1Typically, an anchor region requires 1-3 FF columns, about 1/25 the width of an island.

5.2 Challenges and Previous Approaches
Clock routing and data signal routing are interdependent. In a
general non-split routing process, the router will first generate an
initial clock tree and then route all the data signals. Later, the router
may adjust the clock tree for timing optimization.

However, when we route standalone islands separately, the
router is unaware of the final clock tree for the entire design. If
the island is routed under a different clock tree compared to the
final clock tree, the variation in the clock skew will cause timing
degradation as well as hold violations. Consider a simple example
where the clock signal may enter an island either from the left side
or the right side. If the island is routed assuming the clock is from
the left, but the actual clock signal arrives from the right in the
final stitched design, then the variation in clock skew will cause
timing degradation.

A common solution is to first route each island using estimated
clock delays and skews; after all islands are combined, the router
will globally finalize the clock and re-route the islands to deal with
clock skew variations [65]. However, this approach requires an
additional global routing step that compromises the compile time.

To address this challenge, we propose dedicated clock manage-
ment steps to ensure a consistent clock skew before and after the
stitching process. Our clock routing flow consists of three steps,
which are elaborated in the following subsections. Figure 9 visual-
izes the key concepts in our clock management scheme.

Please Do Not Distribute

19

Island 2Island 1 Island 1 Island 2

Parallel Task 1 Parallel Task 2After Phase 1 Transformation

a2a1a

b b1 b2

Island 1 Island 2

anchor

clock trunk

clock leaf

clock
buffer

clock
entry point

clock source

Figure 9: Route different segments of the clock separately andmain-
tain a stable clock skew in one pass. Step 1: route the clock trunk.
Step 2: lock the delay level of the clock buffers for anchors. Step 3:
route each island and merge with the clock trunk.

5.3 Routing the Clock Trunk (𝑆10)
The goal of this step is to route from the clock source to the clock
entry points of each island. We refer to this route segment as the
clock trunk. Here we aim to minimize the clock skew among those
entry points. To do so, we first route the clock signal from the clock
source to the geometry center of all islands. From there, we fan-
out the clock to reach all islands while minimizing the skew. The
obtained clock trunk will be used to constrain the clock routing of
each island.

5.4 Locking the Clock Buffers for Anchors (𝑆10)
With the clock trunk, we have determined the clock entry points
for each island. Since two adjacent islands will route to the same
set of anchors in between, we need to disable the time-borrowing
optimization [21, 23, 69] on the anchor registers to prevent clock
skew variations of inter-island paths.

In modern FPGAs, the clock network is equipped with buffers
that have configurable delay levels to fine-tune the clock skews [36,

66]. The time-borrowing optimization can utilize the configurable
buffers to redistribute the timing slack between consecutive pipeline
stages, as demonstrated by Figure 10.

A

B

C

D

src-1
sink-1

src-2sink-2

A B C D

Anchor 1 1 1 2 3

Anchor 2 4 3 2 1

Synthetic cost of placing an anchor to a Flip-Flop

4 potential Flip-Flops for anchors

2 adjacent islands

FF-1 FF-2 FF-3

clock

0.5 ns
delay

3 ns 2 ns

Figure 10: By introducing an artificial clock delay of 0.5 ns to FF-2,
the critical path is reduced from 3 ns to 2.5 ns.

In our flow, we separately route two adjacent islands that connect
to the anchors between them. The two independent router processes
may result in different time-borrowing schemes and thus different
clock buffer configurations for the shared anchors. Such potential
inconsistency on the clock delay levels for the shared anchors
will cause unpredictable timing degradation when the islands are
stitched together in the final phase.

To prevent this potential issue, we lock the delay level to the
default value for all clock buffers associated with anchor regis-
ters.2 To mitigate the negative impact of this disabled optimization,
two aforementioned techniques are beneficial: (1) the source and
sink of each anchor net are both pipelined; (2) the local placement
optimization performed after fixing the anchor locations (𝑆8).

5.5 Routing and Merging the Local Clocks (𝑆11)
With the setup from the previous steps, we are ready to route each
island (𝑆11). We enforce the constraint that the local clock net starts
from the pre-determined entry point and prevent the clock buffers
for anchors from being adjusted. A routed island will contain a
complete clock route, including the clock trunk. During the final
island stitching, redundant clock trunks are unified (𝑆13).
Summary. The clock management steps (𝑆10, 𝑆11) ensure that the
clock skew remains consistent before/after we stitch the islands
together. Since the clock entry points within an island are the
same before and after the stitching, the clock skew for intra-island
timing paths will remain unchanged. In addition, since we lock the
delay level for the anchor registers, the clock skew for inter-island
timing paths is also stable. Section 7 shows that without the clock
management, we will run into severe hold violations; meanwhile,
the measured impact of this method on the achievable frequency is
negligible.

6 STITCHING AND INTER-ISLAND ROUTING
6.1 Island Merging (𝑆12, 𝑆13)
In the previous sections, we present how to place and route the
islands in parallel. As a result, we will obtain separate post-routing
checkpoints, each for one island. Next, we need to assemble them
together into the complete physical implementation. While this
step is conceptually simple, it is not supported by the off-the-shelf
commercial tools. We utilize the open-source RapidWright frame-
work [39] to edit the netlists and assemble the physical information
of the island checkpoints.
2In Vivado, this can be achieved by setting the FIXED_ROUTE property of the clock net.

The checkpoint of each island also includes its surrounding
anchor registers. Thus when we stitch the netlists together, we
need to unify (or merge) the duplicated anchor registers, as the
same anchor is included in the checkpoints of both islands on its
two sides. Since the physical information of the duplicated anchors
is consistent after the parallel placement (Section 4), we can safely
merge them without causing conflicts in anchor locations. Further,
our clock routing scheme (Section 5) ensures that different islands
are routed under the same clock trunk, thus the clock net can also
be merged without conflicts (𝑆13).

6.2 Inter-Island Routing (𝑆14)
After the individual checkpoints are assembled together, we need
to resolve the routing conflicts in the anchor regions. This is the
last step of the RapidStream flow.

Problem Description:
Figure 11 shows the low-level routing resources in the anchor

region and why routing conflicts may arise. Since the switch boxes
in the anchor region are shared, the two router processes may
both exploit the same physical wire segments when they separately
route islands 1 and 2. According to our profiling, the conflicting
nets in the anchor region amount to 5-10% of all the nets. Those
conflicts will be exposed after we glue the post-routing checkpoints
of islands together.

Switch
Box

(conflicts)
Island 1

(conflict-free)
Island 2

(conflict-free)

anchors

……

……

a1
a2

Island 1

Island 2 Island 3

Anchor Region

Figure 11: Detailed view of anchor region. Only 1 switch box shown.

One potential solution is to resolve the inter-island conflicts pair
by pair. Figure 12 illustrates why this will not work. In Figure 12 we
could try to separately re-route the conflict nets between islands (1,
2) and between islands (2, 3). However, while a pairwise re-routing
resolves the anchor region conflicts, it will lead to new conflicts
within the islands. In Figure 12, assume the black and the yellow
net are separately routed by two router processes, conflicts may
show up inside the islands (the red segment).

Switch
Box

(conflicts)
Island 1

(conflict-free)
Island 2

(conflict-free)

anchors

……

……

a1
a2

Island 1

Island 2 Island 3

Anchor Region

Figure 12: Pairwise inter-island routing will not work because it
may cause conflicts inside the island.

Therefore, we have to do a global routing pass to fix the inter-
island conflicts. We present two solutions for this routing task. One
set of experiments uses the Vivado router in order to maintain the
best performance, while the other solution relies on a customized
open-source routing solution for the best compile time.

Solution 1: with Commercial Routers
Commercial routers can resolve the inter-island conflicts at the

expense of some runtime overhead because they are optimized for
general purpose routing. The Vivado router spends about 1/4 of
the time for initialization; 1/4 of the time for the actual routing
and timing closure; and 1/2 of the time to loop through a set of
optimization steps even after timing closure.

However, our routing problem has two unique features. First,
90-95% of the nets (intra-island) are fully routed and have been
well optimized for timing. Second, the conflicts are clustered in
the anchor region between islands. In this case, we can potentially
utilize the special properties of the problem for further speedup.

Solution 2: with Customized Partial Router
For this unique problem, we build a lightweight partial router

that only rips up and reroutes the conflicting nets from/to the
anchor regions. Meanwhile, the partial router preserves other fully
routed nets, i.e., masking the routing resources used by those nets
and skipping any processing on those nets.

One challenge of preserving the non-conflicting nets is how to
determine suitable sizes for the bounding boxes. During the routing
process, the bounding boxes restrict the accessible routing resources
for the net. Usually, their sizes are determined based on the pin
locations of a net. A large bounding box allows more flexibility for
the net but will incur extra runtime; while a small bounding box
limits the routability but also reduce the route time. In a typical
routing process with no preserved nets, the effective bounding
boxes for all nets could be determined in advance and will remain
fixed during routing [27, 30, 45, 59, 80]. However, the conventional
approach does not work in our situation due to the reduced routing
flexibility after we preserve all the intra-island nets.

Figure 13 shows a case where a net needs long horizontal rout-
ing detours outside of its bounding box. This is because there is
resource blockage within the initial bounding box resulting from
the preserved nets. Without expanding the bounding box, the net
cannot be routed. There are also cases where vertical long routing
detours are needed for successful routing. Therefore, it is difficult
to determine suitable bounding boxes for all the target nets before
routing.

a1

Initial bounding box

Initial bounding box

Increased bounding box

Preserved
routes

Island

anchor

Figure 13: Required long routing detours outside of the initial net
bounding box.

To address this issue, we use a simple heuristic to start with small
bounding boxes and incrementally increase the box size. Starting
from the second iteration, our router expands the four sides of the
bounding box for each net that will be ripped up and rerouted.

We achieve the goal by customizing an open-source router called
RWRoute [79]. We upgrade its partial routing function to be timing-
driven and enable the tool to expand bounding boxes at runtime.

With a single thread, our customized router achieves a 4× speedup
compared to the Vivado router.

As of now, RWRoute relies on an open timing model [48] to
achieve timing-driven routing. However, this model provides only
the slow path delay estimation of routing resources. As a result,
RWRoute could not resolve hold violations which require the fast
path delay estimation of the routing resources. We present a tem-
porary workaround in the next section to eliminate hold time re-
quirements at the expense of some performance.

Workaround for Hold Violation in Solution 2
Since the customized RWRoute will only route the nets to/from

the anchor registers, we make all anchor registers to be triggered
by the negative clock edge, e.g., in Figure 6, modify the registers
in the green box to be triggered by the negative clock edge while
keeping everything else triggered by the positive clock edge.

Pipeline Data Transfer Logic

9

src anchor

t0

thold

tdelay

anchor
triggered

signal arrives at
t0 + tdelay

tsetup

src triggered

anchor
triggered

Figure 14: Make anchors trigger on negative clock edges.

Figure 14 depicts the idea when the anchor is the signal sink.
The same reasoning applies when the anchor is the signal source.
Assuming a zero clock skew, the source FF is triggered at 𝑡0 and
the anchor FF is triggered at 𝑡0 + 𝑡𝑝𝑒𝑟𝑖𝑜𝑑/2 to transfer Signal 𝑖 . The
signal will arrive at the anchor at 𝑡0 + 𝑡𝑑𝑒𝑙𝑎𝑦 . For Signal 𝑖 to be
properly captured at the anchor FF while still not interfering with
the capturing of Signal 𝑖 − 1, both Equation (2) and (3) must be
satisfied.

𝑡0 + 𝑡𝑠𝑙𝑜𝑤_𝑑𝑒𝑙𝑎𝑦 < 𝑡0 + 𝑡𝑝𝑒𝑟𝑖𝑜𝑑/2 − 𝑡𝑠𝑒𝑡𝑢𝑝 (2)

𝑡0 + 𝑡𝑓 𝑎𝑠𝑡_𝑑𝑒𝑙𝑎𝑦 > 𝑡0 − 𝑡𝑝𝑒𝑟𝑖𝑜𝑑/2 + 𝑡ℎ𝑜𝑙𝑑 (3)
Equation (2) and (3) can be reduced to (4) and (5):

𝑡𝑝𝑒𝑟𝑖𝑜𝑑 > 2(𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡𝑠𝑙𝑜𝑤_𝑑𝑒𝑙𝑎𝑦) (4)

𝑡𝑝𝑒𝑟𝑖𝑜𝑑 > 2(𝑡ℎ𝑜𝑙𝑑 − 𝑡𝑓 𝑎𝑠𝑡_𝑑𝑒𝑙𝑎𝑦) (5)
Therefore, with negatively-triggered anchors, we can always in-
crease the clock period to satisfy the conditions and thus avoid
any setup/hold violation on the anchor nets when RWRoute re-
routes them to fix conflicts in the anchor region. Meanwhile, the
intra-island nets are routed by Vivado and are free of hold violation.

Note that this technique of clock phase shifting is a temporary
measure, which will no longer be needed if an open fast-path timing
model is provided. This experiment shows us the potential for the
best runtime and advantages of an open-source partial router.

7 EXPERIMENT
7.1 Implementation Details
We implement the key modules of RapidStream in Python with
approximately 8K lines of code (LoC). We evaluate RapidStream
using four servers, each with the 56-core Intel Xeon E5-2680 v4
CPU at 2.40GHz and 128 GB of memory. All servers use the Ubuntu
18.04 operating system. In our experiments, we target the Xilinx

UltraScale+ U250 FPGA, which consists of four dies that are stacked
vertically. The target frequency is 400 MHz (i.e., a clock period of 2.5
ns). The CAD tools used in the RapidStream flow are summarized
as follows.
Phase 1: We use Vivado HLS 2020.1 to generate the initial RTL,
then RapidStream floorplans the HLS dataflow design (𝑆1, 𝑆2). Based
on the floorplanning results, RapidStream post-processes the RTL
generated by Vivado HLS to insert the inter-island pipelines (anchor
registers) and rebuilds the RTL hierarchy for each island (𝑆3-𝑆5).
Phase 2: We use Vivado 2021.1 to synthesize each island (𝑆6). Dur-
ing placement, we first use Vivado (place_design) to get the initial
island placement (iteration 1, 𝑆7); then use our ILP-based method to
place the anchors (iteration 2, 𝑆8); finally we switch back to Vivado
(phys_opt_design) to incrementally optimize the placement of is-
lands (iteration 3, 𝑆9). In island routing (𝑆10, 𝑆11), we pre-build the
clock trunk and lock the clock buffer (set_property FIXED_ROUTE)3
for anchors (𝑆10), which are passed as constraints to the Vivado
router (𝑆11). We use the "Explore" directive in Vivado.
Phase 3:We build a stitcher based on RapidWright to edit the netlist
of islands and put them together (𝑆12, 𝑆13). We then use Vivado for
inter-island routing (𝑆14). We separately compare Vivado and our
timing-driven partial router RWRoute on 𝑆14.

Island Organization: We currently employ an empirical scheme
to organize the U250 FPGA fabric as 32 islands in eight rows (four
islands per row), where each island has a uniform height of 120
CLBs.4 Between adjacent islands, we reserve three empty columns
(or ten rows for vertically adjacent islands) of CLBs as the anchor
region to accommodate the anchor registers. The width of the
anchor region is approximately 1/25 as that of an island. At die
boundaries, we use all Laguna columns as the anchor region (see
Figure 4).
Two-Level Stitching: Specifically for Xilinx UltraScale+ devices,
we employ a two-level method in Phase 3. We first stitch the island-
level checkpoints into die-level checkpoints and route the inter-
island nets; we then stitch together all the die-level checkpoints
into the final checkpoint. Note that in the second stitching step,
the die-level checkpoints can be readily assembled without any
re-routing. As shown in Figure 4, the anchor regions at the die
boundary of the Xilinx UltraScale+ FPGAs are different, where the
islands on the two sides of the die boundary rely on the dedicated
Laguna channels for cross-die signals. Since the actual wires within
the channel are point-to-point and separated from each other [64],
there are no conflicts when die-level checkpoints are merged.
Distributed Execution: Each step of RapidStream is launched
as soon as its input is ready. For example, the placer process for
an island will start immediately after the corresponding synthesis
process has finished, and no synchronization is needed towait for all
synthesis processes to complete. Likewise, the process to optimize
the island placement will start as soon as the dependent anchor
placement processes have exited and all surrounding anchors have
been placed.

3Please refer to our code for more details.
4Each CLB in Xilinx FPGAs contains 16 FFs. Note that the width of islands may vary
slightly based on clock region boundaries.

7.2 Benchmarks
To evaluate RapidStream, we use six large-scale dataflow designs
listed in Table 1. We denote the number of PEs as "#V" and the
number of FIFO connections between PEs as "#E". The matrix mul-
tiplication (MM), CNN, L/U decomposition (LU), and MTTKRP are
from the AutoSA project [60]; the 2-D and 3-D stencil accelerators
are from the SODA project [11].

The benchmarks are mapped onto the target U250 FPGA, which
contains 5376 BRAMs, 12288 DSPs, 3456K FFs, and 1728K LUTs.
The mapped designs consume 60-70% of the available resources.

Table 1: Benchmarks.
Name # V # E Topology DSP % BRAM % FF % LUT %
MM 463 854 2-D Mesh 62 23 34 69
CNN 439 813 2-D Mesh 59 33 32 50
LU 1691 4483 Triangular 20 41 26 66

MTTKRP 360 760 2-D Mesh 66 33 30 48
2-D Stencil 266 1562 Irregular DAG 52 21 27 45
3-D Stencil 1314 2866 Irregular DAG 64 39 35 53

7.3 Runtime Reduction
Figure 15 shows the comparison of runtime and the achievable
frequency between the vanilla Vivado flow and RapidStream. Since
RapidStream will insert additional pipelining to the RTL, we con-
sider two Vivado baselines: (1) the original RTL generated by HLS
and (2) the version that has been pipelined by RapidStream.

R
un

tim
e

(m
in

)
Fr

eq
ue

nc
y

(M
H

z)

0

200

400

600

800

1000

1200

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream Vivado + Pipelined RTL Vivado + Orig RTL

0
20
40
60
80

100
120
140

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream with Vivado RapidStream with RWRoute

Fr
eq

ue
nc

y
(M

H
z)

R
un

tim
e

(m
in

)

Figure 15: Comparison of the runtime and achievable frequency be-
tween RapidStream and Vivado.

By default, we use Vivado for inter-island routing (𝑆13) to pursue
the best timing quality. In this case, we achieve a 5-7× speedup and
reduce the otherwise >10-hour compile time to around 2 hours.

In terms of frequency, we achieve better results than both base-
lines. Since each island is much smaller than the entire design,
Vivado can better optimize the timing of each island. The only ex-
ception is the LU benchmark, which has many division operations
that become the critical paths in both flows.

Figure 16 shows the CPU and memory utilization when we use
RapidStream to compile the same CNN design as in Figure 1. While
Vivado uses 2.1 cores on average and runs for about 14 hours,
RapidStream uses 26 cores on average and runs for about 2 hours.

0

50

100

150

200

250

M
em

or
y

(G
B)

0

20

40

60

80

100

0 7 15 22 29 37 44 51 59 66 73 81 88 95 103 110 117 125

C
or

es

Time(min)

Inter-island conflict
resolution (Vivado)

Stitching into die-
level checkpoints

Stitching into final
checkpoints

Phase 2 Phase 3 (with Vivado router)Phase 1

Figure 16: CPU and memory usage of the RapidStream run on the
CNN design. No re-route needed after die-level stitching (Sec. 7.1)

Figure 17 breaks down the parallel compilation process of Phase
2 for the CNN design by plotting how many islands are active in
each step at a given time. For example, after 11 minutes, there
are 24 islands in synthesis while 8 islands have started placement.
Notably, the asynchronous execution of RapidStream alleviates the
load imbalance issue within each step.

0

10

20

30

40

0 3 5 8 11 13 16 19 21 24 27 29 32 35 37 40 43 45 48 51 53 56 59 61

N
um

be
r o

f I
sl

an
ds

Synthesis (S6) Island Placement (S7) Island Placement Opt (S9)
Island Routing (S11) Anchor Placement (S8)

(min)

Figure 17: Number of active jobs in Phase 2.

7.4 Fast Inter-island Routing
Figure 16 shows a long tail in compile time during Phase 3, where
we use Vivado to resolve the inter-island routing conflicts. As men-
tioned in Section 6.2, we customize the open-source RWRoute to
further accelerate this step. Figure 18 shows the comparison be-
tween using the customized RWRoute and using Vivado for 𝑆14.

On average we achieve a 4× speedup over the Vivado router,
reducing the conflict resolution time from about 25 minutes to
6 minutes. The RWRoute flow achieves a lower frequency as it
relies on negatively-triggered anchors (Section 6.2) to prevent hold
violations, which sacrifices the setup slack. This performance loss
can be avoided if a timing model with fast-path delays is available.

In addition to reducing routing time, we further minimize the un-
necessary interactions between Vivado and RapidWright through
reading/writing checkpoints. Since our custom router is also imple-
mented under the RapidWright framework, we can directly pass
the stitcher’s output in memory to RWRoute. This can also alleviate
the long tail issue in the compile time of Phase 3. By our projection,
we can reduce the end-to-end time reported in Section 7.3 down to
∼80 minutes, which is a 7-10× speedup over the Vivado flow.

R
un

tim
e

(m
in

)
Fr

eq
ue

nc
y

(M
H

z)

0

200

400

600

800

1000

1200

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream Vivado + Pipelined RTL Vivado + Orig RTL

0
20
40
60
80

100
120
140

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream with Vivado RapidStream with RWRoute

Fr
eq

ue
nc

y
(M

H
z)

R
un

tim
e

(m
in

)

Figure 18: Runtime comparison in conflict resolution.

7.5 Anchor Placement
In our three-iteration approach to placing the islands and anchors
(𝑆7-𝑆9), we propose a min-cost matching formulation for the anchor
placement (iteration 2, 𝑆8). We use the MM benchmark to compare
our lightweight placer with the Vivado placer. With 32 islands,
there are 52 island pairs and we will have 52 placer processes, each
of which handles one pair of islands.

In terms of the speed, the min-cost matching placer takes less
than a minute to place the anchors between pairs of islands; while it
takes Vivado 21 minutes on average (including the time to read the
checkpoints). As for the timing quality, both placement schemes
can achieve above the 2.5 ns target period after three iterations,
as shown in Figure 19. Note that the timing report is based on
placement-level timing estimation by Vivado.

In some cases, our min-cost matching placement even achieves
higher setup slacks than Vivado. This is because ourmin-costmatch-
ing formulation will always place the anchors at die boundaries
onto the die-crossing channels to balance the signal delays on two
sides. However, Vivado often places the anchors outside the die-
crossing channels as the timing target is still met.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sl
ac

k
(n

s)

Place anchors with RapidStream Place anchors with Vivado

Figure 19: Post-placement slack between using the Vivado placer or
the min-cost matching placer for anchor placement.

After we place all the anchors (iteration 2), we will perform
local optimization of the island placement (iteration 3). We measure
the setup slack of all nets from/to anchors to check the placement
quality of our min-cost matching placement formulation. Based
on Vivado’s timing report, the average setup slack of anchor nets
after iteration 2 is 0.55 ns (when targeting 2.5 ns or 400 MHz), while
iteration 3 improves the average slack to 0.69 ns.

7.6 Clock Management
Here we demonstrate the advantages of preserving the clocking
trunk using a number of experiments with the MM benchmark.

Figure 20 shows the timing degradation when we stitch the islands
together and route the clock net afterward. In this case, we route
each island without preserving the clock trunk. The router relies on
an estimation of the clock skew when routing the data signals. As
a result, the actual clock skew after stitching may be different. As
shown by the figure, all islands run into hold violations after stitch-
ing. Notably, the setup/hold slack times deteriorate by about 0.25
ns for the islands, which will almost always cause hold violations.

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID
Setup Slack Drop Hold Slack Drop

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID

Figure 20: Timing loss after stitching w/o clock management.

Figure 21 shows the setup slack differences when an island is
routedwith preserved clock trunk. This is compared to the reference
case used in Figure 20 without any clocking constraints. The drop
in setup slack is at most 0.15 ns, which is much smaller than that
in Figure 20. The key takeaway is that we avoid the setup/hold loss
during stitching by keeping the clock consistent.

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID
Setup Slack Drop Hold Slack Drop

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID

Figure 21: Clock preservation reduces timing degradation.

8 RELATEDWORK
Split Compilation for HLS Designs can exploit the flexibility to
introduce additional pipelining when appropriate, which is in con-
trast to the split compilation methods for RTL designs (Section 1).

Previous efforts on HLS-level split compilation are based on
pre-building a fixed static region to divide the FPGA into islands.
The static region includes pre-placed and pre-routed logic that
remains unchanged. Then, a design is divided and mapped onto
those disjoint islands. Authors in [51, 63] pre-build an NoC based
on partial reconfiguration [67], as shown in Figure 22. However,
these approaches suffer from the area overhead and the limited NoC
bandwidth. Several recent efforts on FPGA virtualization [71–73]
also rely on pre-building a static region to form disjoint islands.

In DW [62], a static region only consists of a set of partition
pins, which are pre-routed wire segments at the boundary of two
adjacent islands. This helps reduce the area overhead. However, DW
needs users to manually change the design and map inter-island
nets to the partition pins. Moreover, the number and distribution of

Please Do Not Distribute

15

[51] [63]
Pre-built NoC

Category 3
Empty Islands + Partition Pins

Pre-routed wire segments
(partition pin)Empty Island

[62]
Pre-built partition pins

ARM

NoC

RapidStream
No pre-built static region

Anchor registers
to be placed at runtime

Reserved
region for

inter-island
routing

Figure 22: Comparison between previous works and RapidStream.

partition pins are fixed, making timing closure more difficult. DW
reports a Fmax of 187 MHz, while we achieve close to 400 MHz.
Soft Cores with NoC. One way to reduce the compile time is to
implement a collection of soft processors on the FPGA [3, 4, 16,
32, 33, 61, 70], then connect these processors by a configurable
NoC [24, 31, 37, 50, 58]. In comparison, we focus on building high-
performance application-specific accelerators.
Acceleration Based onHardMacros. Researchers have explored
acceleration utilizing pre-implemented hard macros [17, 25, 40, 46,
49, 74]. Hard macros consist of pre-built circuitry and can be reused.
However, this approach may only cover a very limited portion, if
any, of an arbitrary input design. In addition, the fixed shapes of
pre-determined macros may result in area waste.
Co-optimizing HLS and Physical Design. Guo et. al. [28] cou-
ples floorplanning with HLS synthesis to pipeline the global data
transfer logic. RapidStream (in 𝑆2) also adopts the iterative par-
titioning floorplan algorithm. AutoBridge and other works that
co-optimize physical design process and HLS compilation [14, 29,
57, 75–77] rely on the conventional RTL-to-bitstream tool chain.
Dataflow Designs. RapidStream targets the dataflow design pat-
tern, which has been well studied in theory [5, 41] and has been
applied in a rich set of application domains, including linear alge-
bra [55, 60], graph processing [8, 12, 13], image processing [11, 78],
sorting [52, 53] and many more. Recently, HLS tools with dynamic
scheduling [9, 10, 35] are gaining popularity. They introduce elastic
components like FIFOs to enable a dataflow-style execution, which
could potentially be utilized by RapidStream in the future.

9 CONCLUSION
RapidStream is an automated split compilation flow forHLS dataflow
designs. It features tight integration of HLS-level pipelining and
physical design automation to enable split compilation while main-
taining a high timing quality. Compared to a commercial tool chain,
RapidStream achieves about 5-7 × reduction in compile time and up
to 1.3× increase in frequency for HLS dataflow designs. In addition,
our results show potential for up to an order of magnitude speed-up
by leveraging customized open-source routers.

ACKNOWLEDGMENTS
We thank Dina G. Mahmoud for helping with the artifact evaluation. This
work is partially supported by the CRISP Program, the CDSC Industrial
Partnership Program, the Xilinx Adaptive Compute Clusters Program. We
thank Gurobi and GNU Parallel for their academic licenses. The opinions
expressed by the authors do not represent future Xilinx policies.

REFERENCES
[1] Matthew An, J Gregory Steffan, and Vaughn Betz. 2014. Speeding up FPGA place-

ment: Parallel algorithms and methods. In 2014 IEEE 22nd Annual International
Symposium on Field-Programmable Custom Computing Machines. IEEE, 178–185.

[2] Melvin A Breuer. 1977. A class of min-cut placement algorithms. In Proceedings
of the 14th Design Automation Conference. 284–290.

[3] Davor Capalija and Tarek S Abdelrahman. 2011. Towards synthesis-free JIT com-
pilation to commodity FPGAs. In 2011 IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines. IEEE, 202–205.

[4] Davor Capalija and Tarek S Abdelrahman. 2013. A high-performance overlay
architecture for pipelined execution of data flow graphs. In 2013 23rd International
Conference on Field programmable Logic and Applications. IEEE, 1–8.

[5] Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli.
2001. Theory of latency-insensitive design. IEEE Transactions on computer-aided
design of integrated circuits and systems 20, 9 (2001), 1059–1076.

[6] Tony Chan, Jason Cong, and Kenton Sze. 2005. Multilevel generalized force-
directed method for circuit placement. In Proceedings of the 2005 international
symposium on physical design. 185–192.

[7] Chandra Chekuri. 2010. https://courses.engr.illinois.edu/cs598csc/sp2010/
Lectures/Lecture11.pdf

[8] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. ThunderGP: HLS-based graph processing framework on fpgas.
In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 69–80.

[9] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Ienne, and John
Wickerson. 2020. Combining Dynamic & Static Scheduling in High-level Syn-
thesis. In The 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 288–298.

[10] Jianyi Cheng, Lana Josipović, George A Constantinides, Paolo Ienne, and John
Wickerson. 2021. DASS: Combining Dynamic and Static Scheduling in High-level
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2021).

[11] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: stencil with
optimized dataflow architecture. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[12] Yuze Chi, Licheng Guo, and Jason Cong. 2022. Accelerating SSSP for Power-
Law Graphs. In Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays.

[13] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and Jason Cong.
2021. Extending High-Level Synthesis for Task-Parallel Programs. In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 204–213.

[14] Jason Cong, PengWei, Cody Hao Yu, and Peipei Zhou. 2018. Latte: Locality aware
transformation for high-level synthesis. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
125–128.

[15] Jason Cong and Yi Zou. 2009. Parallel multi-level analytical global placement
on graphics processing units. In 2009 IEEE/ACM International Conference on
Computer-Aided Design-Digest of Technical Papers. IEEE, 681–688.

[16] James Coole and Greg Stitt. 2010. Intermediate fabrics: Virtual architectures for
circuit portability and fast placement and routing. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis. 13–22.

[17] James Coole and Greg Stitt. 2012. BPR: fast FPGA placement and routing using
macroblocks. In Proceedings of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis. 275–284.

[18] Kaushik De and Prithviraj Banerjee. 1994. Parallel logic synthesis using parti-
tioning. In 1994 International Conference on Parallel Processing Vol. 3, Vol. 3. IEEE,
135–142.

[19] Kaushik De, LA Chandy, Sumit Roy, Steven Parkes, and Prithviraj Banerjee. 1995.
Parallel algorithms for logic synthesis using the MIS approach. In Proceedings of
9th International Parallel Processing Symposium. IEEE, 579–585.

[20] Shounak Dhar, Love Singhal, Mahesh Iyer, and David Pan. 2019. FPGA Acceler-
ated FPGAPlacement. In 2019 29th International Conference on Field Programmable
Logic and Applications (FPL). 404–410.

[21] Xiao Dong and Guy GF Lemieux. 2009. PGR: Period and glitch reduction via clock
skew scheduling, delay padding and GlitchLess. In 2009 International Conference
on Field-Programmable Technology. IEEE, 88–95.

[22] Alfred E Dunlop, Brian W Kernighan, et al. 1985. A procedure for placement
of standard cell VLSI circuits. IEEE Transactions on Computer-Aided Design 4, 1
(1985), 92–98.

[23] John P. Fishburn. 1990. Clock skew optimization. IEEE transactions on computers
39, 7 (1990), 945–951.

[24] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx
adaptive compute acceleration platform: VersalTM architecture. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 84–93.

[25] Marcel Gort and Jason Anderson. 2014. Design re-use for compile time reduction
in FPGA high-level synthesis flows. In 2014 International Conference on Field-
Programmable Technology (FPT). IEEE, 4–11.

[26] Marcel Gort and Jason H Anderson. 2010. Deterministic multi-core parallel rout-
ing for FPGAs. In 2010 International Conference on Field-Programmable Technology.
IEEE, 78–86.

[27] Marcel Gort and Jason H Anderson. 2011. Accelerating FPGA routing through
parallelization and engineering enhancements special section on PAR-CAD 2010.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
31, 1 (2011), 61–74.

[28] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained
Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die
FPGAs. In The 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 81–92.

[29] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru
Zhang, and Jason Cong. 2020. Analysis and Optimization of the Implicit Broad-
casts in FPGA HLS to Improve Maximum Frequency. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.
2020.9218718

[30] Chin Hau Hoo and Akash Kumar. 2018. ParaDRo: A Parallel Deterministic
Router Based on Spatial Partitioning and Scheduling. In Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Mon-
terey, CALIFORNIA, USA) (FPGA ’18). Association for Computing Machinery,
New York, NY, USA, 67–76. https://doi.org/10.1145/3174243.3174246

[31] Yutian Huan and André DeHon. 2012. FPGA optimized packet-switched NoC
using split and merge primitives. In 2012 International Conference on Field-
Programmable Technology. IEEE, 47–52.

[32] Abhishek Kumar Jain, Douglas LMaskell, and Suhaib A Fahmy. 2016. Throughput
oriented FPGA overlays using DSP blocks. In 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 1628–1633.

[33] Abhishek Kumar Jain, Khoa Dang Pham, Jin Cui, Suhaib A Fahmy, and Douglas L
Maskell. 2014. Virtualized execution and management of hardware tasks on a
hybrid ARM-FPGA platform. Journal of Signal Processing Systems 77, 1 (2014),
61–76.

[34] Wei Jiang, Zhiru Zhang, Miodrag Potkonjak, and Jason Cong. 2008. Scheduling
with integer time budgeting for low-power optimization. In 2008 Asia and South
Pacific Design Automation Conference. IEEE, 22–27.

[35] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically sched-
uled high-level synthesis. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 127–136.

[36] Parivallal Kannan and Satish Sivaswamy. 2016. Performance driven routing for
modern FPGAs. In Proceedings of the 35th International Conference on Computer-
Aided Design. 1–6.

[37] Nachiket Kapre and Jan Gray. 2017. Hoplite: A deflection-routed directional
torus noc for fpgas. ACM Transactions on Reconfigurable Technology and Systems
(TRETS) 10, 2 (2017), 1–24.

[38] Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong, and
Zhiru Zhang. 2021. Programming and Synthesis for Software-defined FPGA
Acceleration: Status and Future Prospects. ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 14, 4 (2021), 1–39.

[39] Chris Lavin and Alireza Kaviani. 2018. Rapidwright: Enabling custom crafted
implementations for fpgas. In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 133–140.

[40] Christopher Lavin,Marc Padilla, Jaren Lamprecht, Philip Lundrigan, Brent Nelson,
and Brad Hutchings. 2011. HMFlow: Accelerating FPGA compilation with hard
macros for rapid prototyping. In 2011 IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines. IEEE, 117–124.

[41] Edward A Lee and David G Messerschmitt. 1987. Synchronous data flow. Proc.
IEEE 75, 9 (1987), 1235–1245.

[42] Wuxi Li, Meng Li, Jiajun Wang, and David Z Pan. 2017. UTPlaceF 3.0: A par-
allelization framework for modern FPGA global placement. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 922–928.

[43] Tao Lin, Chris Chu, and GangWu. 2015. POLAR 3.0: An ultrafast global placement
engine. In 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 520–527.

[44] Adrian Ludwin, Vaughn Betz, and Ketan Padalia. 2008. High-quality, deterministic
parallel placement for FPGAs on commodity hardware. In Proceedings of the 16th
international ACM/SIGDA symposium on Field programmable gate arrays. 14–23.

[45] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu,
Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin Ahmed,
Kenneth B. Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. 2014. VTR
7.0: Next Generation Architecture and CAD System for FPGAs. 7, 2 (2014).
https://doi.org/10.1145/2617593

[46] Sen Ma, Zeyad Aklah, and David Andrews. 2016. Just in time assembly of
accelerators. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 173–178.

https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture11.pdf
https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture11.pdf
https://doi.org/10.1109/DAC18072.2020.9218718
https://doi.org/10.1109/DAC18072.2020.9218718
https://doi.org/10.1145/3174243.3174246
https://doi.org/10.1145/2617593

[47] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan. 2003. Fast timing-driven
partitioning-based placement for island style FPGAs. In Proceedings of the 40th
annual design automation conference. 598–603.

[48] Pongstorn Maidee, Chris Neely, Alireza Kaviani, and Chris Lavin. 2019. An
Open-source Lightweight Timing Model for RapidWright. In 2019 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 171–178.

[49] Fubing Mao, Wei Zhang, Bingsheng He, and Siew-Kei Lam. 2017. Dynamic
module partitioning for library based placement on heterogeneous FPGAs . In
2017 IEEE 23rd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, 1–6.

[50] Michael K Papamichael and James C Hoe. 2012. CONNECT: Re-examining
conventional wisdom for designing NoCs in the context of FPGAs. In Proceedings
of the ACM/SIGDA international symposium on Field Programmable Gate Arrays.
37–46.

[51] Dongjoon Park, Yuanlong Xiao, Nevo Magnezi, and André DeHon. 2018. Case for
fast FPGA compilation using partial reconfiguration. In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 235–2353.

[52] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Jason Cong.
2021. FANS: FPGA-Accelerated Near-Storage Sorting. In 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 106–114.

[53] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank Chang,
and Jason Cong. 2020. Bonsai: High-Performance Adaptive Merge Tree Sorting.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture.
IEEE, 282–294.

[54] Minghua Shen and Guojie Luo. 2015. Accelerate FPGA routing with parallel
recursive partitioning. In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 118–125.

[55] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. 2021. Serpens: A High
Bandwidth Memory Based Accelerator for General-Purpose Sparse Matrix-Vector
Multiplication. arXiv preprint arXiv:2111.12555 (2021).

[56] Mirjana Stojilović. 2017. Parallel FPGA routing: Survey and challenges. In 2017
27th International Conference on Field Programmable Logic and Applications (FPL).
IEEE, 1–8.

[57] Mingxing Tan, Steve Dai, Udit Gupta, and Zhiru Zhang. 2015. Mapping-aware con-
strained scheduling for LUT-based FPGAs. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 190–199.

[58] Kizhepatt Vipin, Jan Gray, and Nachiket Kapre. 2017. Enabling partial recon-
figuration and low latency routing using segmented FPGA NoCs. In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL). IEEE,
1–8.

[59] Dekui Wang, Zhenhua Duan, Cong Tian, Bohu Huang, and Nan Zhang. 2017. A
runtime optimization approach for FPGA routing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37, 8 (2017), 1706–1710.

[60] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Com-
piler for High-Performance Systolic Arrays on FPGA. In Proceedings of the 2021
ACM/SIGDA international symposium on Field-programmable gate arrays.

[61] David Wilson and Greg Stitt. 2019. Seiba: An FPGA Overlay-Based Approach to
Rapid Application Development. In 2019 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig). IEEE, 1–8.

[62] Yuanlong Xiao, Syed Tousif Ahmed, and André DeHon. 2020. Fast Linking of
Separately-Compiled FPGA Blocks without a NoC. In 2020 International Confer-
ence on Field-Programmable Technology (ICFPT). IEEE, 196–205.

[63] Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han,
Rui Ding, Nevo Magnezi, Raphael Rubin, and André DeHon. 2019. Reducing
FPGA Compile Time with Separate Compilation for FPGA Building Blocks. In
2019 International Conference on Field-Programmable Technology (ICFPT). IEEE,

153–161.
[64] Xilinx. 2020. Xilinx UltraScale Plus Architecture. https://www.xilinx.com/

products/silicon-devices/fpga/virtex-ultrascale-plus.html
[65] Xilinx. 2021. https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2021_1/ug905-vivado-hierarchical-design.pdf
[66] Xilinx. 2021. https://www.xilinx.com/support/documentation/user_guides/

ug572-ultrascale-clocking.pdf
[67] Xilinx. 2021. https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
[68] Zhen Yang, Anthony Vannelli, and Shawki Areibi. 2007. An ILP based hierarchical

global routing approach for VLSI ASIC design. Optimization Letters 1, 3 (2007),
281–297.

[69] Chao-Yang Yeh and Malgorzata Marek-Sadowska. 2005. Skew-programmable
clock design for FPGA and skew-aware placement. In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate arrays.
33–40.

[70] Michael Xi Yue, Dirk Koch, and Guy GF Lemieux. 2015. Rapid overlay builder
for xilinx fpgas. In 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 17–20.

[71] Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the Cloud. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 845–858.

[72] Yue Zha and Jing Li. 2021. Hetero-ViTAL: A Virtualization Stack for Heteroge-
neous FPGA Clusters. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 470–483.

[73] Yue Zha and Jing Li. 2021. When application-specific ISA meets FPGAs: a multi-
layer virtualization framework for heterogeneous cloud FPGAs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 123–134.

[74] Niansong Zhang, Xiang Chen, and Nachiket Kapre. 2020. Rapidlayout: Fast hard
block placement of fpga-optimized systolic arrays using evolutionary algorithms.
In 2020 30th International Conference on Field-Programmable Logic andApplications
(FPL). IEEE, 145–152.

[75] Jieru Zhao, Tingyuan Liang, Sharad Sinha, and Wei Zhang. 2019. Machine
learning based routing congestion prediction in FPGA high-level synthesis. In
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1130–1135.

[76] Ritchie Zhao, Mingxing Tan, Steve Dai, and Zhiru Zhang. 2015. Area-efficient
pipelining for FPGA-targeted high-level synthesis. In Proceedings of the 52nd
Annual Design Automation Conference. 1–6.

[77] Hongbin Zheng, Swathi T Gurumani, Kyle Rupnow, and Deming Chen. 2014.
Fast and effective placement and routing directed high-level synthesis for FP-
GAs. In Proceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays. 1–10.

[78] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen Jin,
Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez, et al.
2018. Rosetta: A realistic high-level synthesis benchmark suite for software pro-
grammable fpgas. In Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 269–278.

[79] Yun Zhou, Pongstorn Maidee, Chris Lavin, Alireza Kaviani, and Dirk Stroobandt.
2021. RWRoute: An Open-source Timing-driven Router for Commercial FPGAs.
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 15, 1 (2021),
1–27.

[80] Yun Zhou, Dries Vercruyce, and Dirk Stroobandt. 2020. Accelerating FPGA Rout-
ing Through Algorithmic Enhancements and Connection-Aware Parallelization.
ACM Trans. Reconfigurable Technol. Syst. 13, 4, Article 18 (Aug. 2020), 26 pages.
https://doi.org/10.1145/3406959

https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-clocking.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
https://doi.org/10.1145/3406959

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Scope
	2.2 Organization of the FPGA Fabric
	2.3 Flow Overview

	3 Partitioning
	3.1 Problem Description
	3.2 Approaches

	4 Parallel Placement
	4.1 Iterative Placement of Anchors and Islands
	4.2 Anchor Placement by Min-Cost Matching

	5 Clock Routing
	5.1 Problem Description
	5.2 Challenges and Previous Approaches
	5.3 Routing the Clock Trunk (S10)
	5.4 Locking the Clock Buffers for Anchors (S10)
	5.5 Routing and Merging the Local Clocks (S11)

	6 Stitching and Inter-Island Routing
	6.1 Island Merging (S12, S13)
	6.2 Inter-Island Routing (S14)

	7 Experiment
	7.1 Implementation Details
	7.2 Benchmarks
	7.3 Runtime Reduction
	7.4 Fast Inter-island Routing
	7.5 Anchor Placement
	7.6 Clock Management

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

