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Abstract—FPGA application size is rapidly grow-
ing by reuse and replication. Achieved quality of
results (QoR) of these large designs is often much
lower than what could be realized with localized
circuits at a modular level. One underlying reason
for QoR loss is that back-end implementation tools
compile the designs as one large circuit entry. Is there
a way to bring innovation to the implementation stage
of FPGA compilation that can improve QoR?
This work proposes a pre-implemented method-

ology for FPGAs to achieve higher performance or
productivity and introduces RapidWright, an open-
source platform to enable this new approach. We
aim to enhance either QoR or productivity through
the reuse of modular implementations and present
examples that improve QoR up to 50% or accelerate
compilation time and debug by more than an order
of magnitude. Finally, we demonstrate how Rapid-
Wright enables custom crafted implementations with
near spec performance.
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I. Introduction

FPGA implementation tools lead a challenging life.
On one hand, they must keep pace with FPGAs that
have grown rapidly in both capacity and performance.
On the other hand, FPGA growth has enabled signif-
icant advances in both integration and functionality,
further magnifying the support burden of the tools.
As FPGAs are designed to support a wider range of
applications than any ASIC or ASSP counterpart, the
tools must accommodate a broad design space by syn-
thesizing and implementing circuits of many domains.
Thus, FPGA tools, such as Xilinx’s Vivado, have become
highly complex software systems that must perform this
feat for all devices in the vendor’s product portfolio.

The necessity of breadth coverage by commercial tools
often leads to implementations that do not take full
advantage of the underlying hardware. For example,
UltraScale+ devices employ DSP blocks that are rated
at 891MHz for the fastest speed grade. Nonetheless,
large designs implemented on FPGAs typically achieve
system frequencies lower than 400MHz. In this work, we
propose a methodology with the goal of delivering near-
spec performance, addressing this performance gap.
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Figure 1. Vivado and RapidWright DCP Compatibility

We introduce RapidWright1, an open source platform
that provides a gateway to Vivado’s back-end implemen-
tation tools (see Figure 1) in order to realize the full
potential of advanced FPGA silicon. RapidWright works
synergistically with Vivado to produce highly-tuned,
custom implementations for emerging applications. It
builds on the premise of two key observations: (1) Vendor
tools such as Vivado often produce high performance
results for small modules of a design. (2) Emerging
applications such as compute-bound or machine learning
designs grow in size by module replication. We rely on
Vivado to produce highly optimized implementations for
key modules of a design to deliver the highest perfor-
mance. RapidWright can then replicate, relocate and
assemble these tuned modules to compose a complete
application while maintaining high performance.

The RapidWright platform employs three key capa-
bilities to sustain global system performance. First, it
preserves high quality placement and routing of pre-
implemented blocks. Second, it enables reuse and repli-
cation of blocks to leverage Vivado’s efforts of achieving
high quality results. And third, RapidWright stitches the
blocks together with minimal or no loss of quality. Lever-
aging these capabilities, we demonstrate how to augment
Vivado and close the performance gap between device

1Wright = maker or builder
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data sheets and achievable results through vendor tools.
Keep in mind, relocating pre-implemented modules is a
challenging task and not feasible in Vivado in all but
the smallest cases. RapidWright ultimately enables a
new mode of implementation composition that has not
been feasible previously and this work demonstrates how
these capabilities contribute to both performance and
productivity. Specific contributions of this work include:

1) An open source platform that enables crafting cus-
tomized module-based implementations of FPGA
applications.

2) Specific case studies showing how RapidWright
improves design performance and productivity.

3) A versatile gateway to Vivado by reading and writ-
ing design checkpoints (DCPs) natively — setting
the ground work of an academic ecosystem for
further advancing FPGA tools.

The third contribution empowers researchers by com-
bining the commercial credibility of FPGA tools with
the agility of an open source framework, leading to
innovative solutions that might not be feasible otherwise.
The next section summarizes background and related
work. Section III describes core RapidWright structure.
Section IV proposes a pre-implemented design strategy
built into RapidWright followed by a number of example
use cases and results in Section V. We conclude and
outline future work in Section VI.

II. Related Work
There have been a number of open interfaces to FPGA

vendor tools in the past. The Xilinx Design Language
(XDL) [1] provided an open design file format released
with ISE (predecessor to Vivado). XDL provided un-
precedented access to placement and routing information
that made building custom CAD tools possible. Open
source projects and tools such as RapidSmith [2], Torc
[3], and ReCoBus-Builder [4] capitalized on the XDL
interface to increase productivity. Altera (now part of
Intel) also released the Quartus University Interface
Program (QUIP) [5] with similar attributes to XDL.

XDL and QUIP are no longer supported by the latest
vendor tool suites Vivado and Quartus Prime. Instead,
Xilinx’s Vivado utilizes a new Tcl-based interpreter. This
allows users to perform customized tasks by writing Tcl
scripts. For small tasks, this is not a problem. However,
as task size and complexity grows, productivity is limited
by Tcl interpreter performance. For example, Tincr [6]
and the Vivado Design Interface (VDI) [7] have extended
RapidSmith to be compatible with Vivado by replacing
XDL with Tcl interface routines. However, design import
by this method is constrained by the low speed of
Tcl commands, limiting feasibility to only the smallest
designs. Townsend [7] reports a design of ~54K LUTs
targeting an xc7a100t (Artix 7) takes ~2.5 hours to

import into Vivado (6 LUTs/second). By rough compar-
ison, RapidWright writes a 210K LUT DCP targeting an
xcvu190 (Virtex UltraScale) in 91 seconds. Vivado reads
the DCP in 303 seconds, for a total import time of 394
seconds, or 533 LUTs/second, 88× faster than VDI. By
avoiding Tcl and using DCPs, RapidWright enables a
more productive interface.

III. RapidWright: Foundation and Structure
To support RapidWright’s mission of empowering

users to craft customized implementations within an
open source framework, three pieces of infrastructure are
needed. First, an accurate device model of the under-
lying architecture. Second, logical and physical design
models with representative data structures and APIs.
Lastly, readers and writers for DCP file components that
populate and export to/from design models—providing
a gateway to Vivado.

A. The Device Model
The device model is compiled from a detailed textual

report derived from externally available device data
from Vivado. RapidWright parses this report, called a
Xilinx Device Description (XDD) file, for each device
and generates an internal device database file as shown
in Figure 2. RapidWright faithfully reproduces nearly all
device objects present within Vivado [8], including logic
constructs such as BELs (basic elements of logic), sites,
tiles, clock regions (CRs) and super logic regions (SLRs).
It also includes all routing constructs such as site wires,
BEL pins, site pips, site pins, wires, pips, and nodes.

The performance of a select number of device models
is shown in Table I. As seen in the table, even the
largest Xilinx device loads in <2 seconds and consumes
only about 400MBs. These load times are an order of
magnitude faster than a corresponding load by Vivado.

B. The Design Model
Two major components are central to the design model

within Vivado and RapidWright. First, in contrast to
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Table I
Selected RapidWright Device Load Characteristicsa

Part Load Time Memory LUTs Platform

xc7a12t 0.21s 53MB 8,000
xc7z020 0.21s 74MB 53,200 PYNQ-Z1
xcku040 0.91s 189MB 242,400 KCU105
xczu19eg 1.85s 386MB 522,720
xc7v2000t 1.86s 339MB 1,221,600
xcvu9p 1.97s 409MB 1,182,240 AWS F1
xcvu440 1.98s 393MB 2,532,960
aAverage of 10 runs on an Intel Core i7-4600U 2.10GHz,

16GB RAM and 250GB SSD using Oracle JRE 1.8.0_45 JVM.

the previous generation ISE tools, Vivado preserves
and maintains the logical netlist throughout the entire
implementation flow. Second, a physical netlist is formed
during implementation. A physical netlist maps primi-
tive cells within the logical netlist to BEL sites on the
device and assigns nets to configurable routing inter-
connect resources. RapidWright represents both logical
and physical netlists through data models of hierarchical
classes and APIs.

1) Logical Netlist: RapidWright capitalizes on Vi-
vado’s support of EDIF [9] (in DCP and Tcl APIs)
by using it as the logical netlist exchange format and
provides an EDIF reader, writer and logical netlist data
structures. An unencrypted EDIF netlist is a prerequi-
site to open any design in RapidWright as Vivado uses
netlist name compatibility for placement and routing in-
formation. RapidWright contains various APIs to query,
traverse and modify the logical netlist and provides
direct mappings to the physical netlist.

2) Physical Netlist: A core portion of RapidWright
is the physical netlist model. The physical netlist is
responsible for modeling the placement and routing
information stored in a DCP and makes it accessible
to the user. Although the specific details and represen-
tations provided in RapidWright are beyond the scope
of this section, there are adequate facilities within the
framework to perform customized operations such as
placement, routing, application-specific clocking, statis-
tical analysis and module relocation and replication.

C. Design Checkpoint Readers and Writers
An enabling feature of RapidWright is how it directly

reads/writes design checkpoint (DCP) files from/to Vi-
vado and populates the design model accordingly. A
DCP is a Vivado file that represents a design snapshot at
any stage of the design/implementation process. A DCP
file is actually a .ZIP file with a .DCP extension and
multiple files are stored inside. The logical netlist of a
design is an EDIF [9] file and the physical netlist is stored
in an XDEF (internal Xilinx binary format) file. As
shown in Figure 2, the RapidWright framework includes
EDIF and XDEF readers and writers that have been
created specifically to support DCP files. These readers

and writers are fully tested with hundreds of different
designs across multiple architecture by validating round
trip accuracy using placement and routing reporting
methods in Vivado. RapidWright also preserves and
minimally parses other essential DCP files (such as
constraints) to ensure full design reproducibility.

IV. A Pre-implemented Modular Design
Strategy

One of the key attributes of RapidWright is the ability
to capture optimized placement and routing solutions
for a module and reuse them in multiple contexts or
locations on a device. Vivado often provides good results
for small implementation problems (smaller than 10k
LUTs within a clock region). However, when those same
modules are combined into a large system, total compile
time increases and the probability of timing closure is re-
duced. This phenomenon limits achievable performance
and timing closure predictability of larger designs. We
show how to preserve and reuse high quality solutions
in RapidWright with pre-implemented modules, and
propose a methodology of how they can improve the
overall system performance in a large design.

A. Pre-implemented Modules
Pre-implemented modules are self-contained netlist

cells that contain relative placement and routing infor-
mation (generally with a rectangular footprint) targeting
a specific FPGA device. RapidWright generates pre-
implemented modules by invoking Vivado to synthesize,
place and route them out-of-context (OOC) of the orig-
inal design. RapidWright then preserves and packages
the placement and routing information from the OOC
DCP.

For a pre-implemented module to be reusable, it often
needs to be area constrained with a pblock containing
the attribute CONTAIN_ROUTING=1. This ensures that
placement and routing of the module is restricted to the
respective rectangle, reducing its footprint such that it
has a higher number of compatible placement locations
across the device.
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B. Design Strategy and Flow

RapidWright endows users with a new design vocabu-
lary by caching, reusing and relocating pre-implemented
blocks. We believe this to be an enabling concept and
offer a high performance design strategy as depicted in
Figure 3.

The first step requires the design architect to re-
structure the proposed design such that it can take full
advantage of the benefits provided by pre-implemented
modules. We define restructuring as a design refactor-
ing that reflects three favorable design characteristics:
(1) modularity, (2) module replication and (3) latency
tolerance. Modularity uncovers design structure so it
can be strategically mapped to architectural patterns.
When modules are replicated, reuse of those high quality
solutions and architectural patterns can be exploited to
increase the benefits. Finally, if the modules within a
design tolerate additional latency, inserting pipeline ele-
ments between them improves both timing performance
and relocatability.

After the design architect has successfully restruc-
tured and modularized a design, step two of Figure 3
is followed. Here, the design architect creates an imple-
mentation guide file that captures how best to map the
modules of a design to the architecture of the target
device. Specifically, pblocks are chosen for those pre-
implemented modules of interest and physical locations
are chosen for each instance. This step provides the
design architect an opportunity to navigate FPGA fabric
discontinuities. These discontinuities include boundaries
such as IO columns, processor subsystems, and most
significantly, SLR crossings. Such architectural obsta-
cles cause design disruptions when targeting high per-
formance. However, by leveraging the pre-implemented
methodology provided in RapidWright, custom-created
implementation solutions can be identified and planned
out to manage the fabric discontinuities by custom
module placement. Ultimately, this process is iterative
and can inform useful RTL/design changes by focusing
design structure to better match architectural resources.

Step three of the design strategy is an automated flow
provided with RapidWright, whose details are denoted in
Figure 4. We leverage a design input method in Vivado
called IP Integrator (IPI)[10]. IPI offers an interactive
block-based approach for system design by providing an
IP library, IP creation flow and IP caching. RapidWright
takes advantage of IPI by using leaf IP blocks as de-facto
pre-implemented blocks and also by leveraging the IP
caching mechanism. The RapidWright pre-implemented
flow extends the caching mechanism to go beyond syn-
thesis, by performing OOC placement and routing on
the block within a constrained area. The flow begins by
invoking Vivado’s typical IPI synthesis and creating pre-
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implemented blocks for each module if not already found
in the cache. RapidWright has an IPI Design Parser
(EDIF-based) that creates a black-box netlist where
each instance of a module is empty, ready to receive
the pre-implemented module guts. The block stitcher
reads the IP cache and populates the IPI design netlist.
After stitching, the blocks are placed according to the
implementation guide file from the design architect.
Once all the blocks are placed, RapidWright creates a
DCP file that is read into Vivado that completes the
final routes.

V. Results: RapidWright Deployment
Examples

This section details three use cases that exemplify the
performance and productivity gains possible by lever-
aging RapidWright customization capabilities. First, we
show how to improve performance by leveraging the pre-
implemented strategy and flow described in Section IV.
In the second subsection we focus on design productivity
and how pre-implemented modules can benefit both
compile time and debug. Finally, we demonstrate near-
spec performance on an AWS F1 instance design by
combining the benefits of our pre-implemented strategy
and customization capabilities of RapidWright.

A. Capturing Performance by Pre-implemented Con-
struction

We present four designs on which we applied the pre-
implemented strategy and corresponding performance
results can be seen in Table II. These designs were taken
from scenarios where the underlying source was already
optimized (baseline). To help quantify the benefits of
the proposed strategy, results are reported for the re-
structured design using both conventional Vivado and
the pre-implemented approach.

The SEISMIC design includes 660 identical modules
chained by input and output dependencies on its three
previous and three next neighbors. Each module is a seis-
mic data computation and consumes 252 LUTs and 342
flops after restructuring, with the entire implementation
consuming 93% of all device LUTs. After experimenta-
tion of different pblocks, it was found that a 3x15 CLE



Table II
Pre-implemented Module Flow Results

Design Device LUTs FFs DSPs BRAMs Baseline Restructured ∆ Pre-implemented Total ∆

SEISMIC KU040 93% 5% - - 270MHz 354MHz 31% 390MHz 41%
FMA KU115 25% 50% 97% 6% 270MHz 273MHz 1% 417MHz 54%

SGEMM KU115* 19% 20% 87% - 391MHz 437MHz 10% 462MHz 16%
ML ZU9EG* 46% 29% 42% 96% 368MHz 569MHz 55% 541MHz 50%

*Constrained portion of the device

area constraint (integer multiple of CR height) produced
the best performance and fabric usage efficiency.

As the connectivity of the SEISMIC modules was a
linear nearest neighbor progression, some experiments of
placement patterns were run and partial screenshots of
module layouts (per a RapidWright module exploration
tool) are shown in Figure 5. Although three separate
packing patterns were attempted, all yielded fmax fig-
ures within ±3% demonstrating that the fabric inter-
connect flexibility was not the underlying bottleneck in
the design.

The FMA design is another benchmark that has 1415
modules, of which 1340 are 16-bit multiply accumulate
(MAC) operations. It also includes an SDAccel shell de-
sign, allowing communication to a host over PCIExpress.
The MAC modules consumed 4 DSP48E2s each and
through experimentation, it was found that a 4x10 CLE
pblock (including 4 DSPs) yielded the best performance.
The MAC modules connect in a nearest neighbor linear
pipeline and a serpentine placement pattern yielded the
best performance (similar to that used in Figure 5a).
Of significance, the MAC modules communicated with
an AXI streaming bus protocol that contained a ready
feedback signal between each block that often became
the critical path in our experiments.

The FMA implementation dealt with several fabric
discontinuities: inconsistent tile patterns, IO columns
and SLR crossings. A screenshot of the bottom half
(lower SLR) of the FMA design can be seen in Fig-
ure 6. Six different pre-implemented versions of the MAC
module were created to get maximum utilization of the
FPGA fabric. Due to fabric discontinuities, additional

(a) Vertical serpentine (b) Vertical zig-zag (c) Horizontal serpentine

Figure 5. SEISMIC Module Placement Patterns Created with
RapidWright

implementations (1, 2 and 3) are necessary to provide
coverage for all CLB/DSP column patterns. Implemen-
tations 4 and 5 addressed the depopulated CLBs for SLR
crossing tiles, but only 4 instances instead of 6 fit due
to fewer CLBs.

As the MAC serpentine chain wound its way around
the chip, it had to cross IO columns (black vertical bars
in Figure 6), additional pipeline elements were placed at
the edges to ensure they (and the ready feedback signal)
did not become a bottleneck. Ultimately, we achieved a
54% improvement over unaided Vivado (baseline) with
the final critical path being signals crossing the SLR.

The SGEMM design performs a single precision float-
ing point general matrix multiplication and uses 150
identical modules to complete the operation. Unfortu-
nately, the 16 DSP48E2 primitives needed per module
created a poor architectural mapping to the 24 in a
CR DSP column. Due to this mismatch, the SGEMM
design only had minor improvements using the pre-
implemented module flow.

Our final benchmark design, ML, is a machine learning
application that had several blocks types, of which the
majority were processing cells (16x16 array). This design
underwent several changes in order to make it amenable
to IPI and the pre-implemented blocks flow. In fact,
the restructured design compiled in Vivado produced a
slightly better result than the pre-implemented module
flow. The lower than expected performance from the pre-
implemented flow was caused by an inter-block routing
issue we discuss further at the conclusion of this section.

The key takeaway from this subsection is two-fold.
The first two designs highlight how an application ar-
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chitect can leverage the proposed strategy and flow to
explore a variety of module placements. The FMA design
success is enabled by proactive module placement to
compensate for fabric discontinuities. In contrast, the
last two designs show that such success is not pervasive
and highly depends on the nature of the design. We also
observe that the refactoring process is independently
beneficial as in the ML design example. In the end,
our methodology is more likely to succeed with larger
designs of high replication with full awareness of the
target architecture.

B. Productivity by Modular Reuse
As design sizes grow, compile times increase and

productivity is adversely affected. To help alleviate this
trend, we demonstrate how RapidWright can leverage
module reuse to reduce both compile time and imple-
mentation iterations for debug scenarios.

One way to reduce compile time, is to reuse exist-
ing results. For example, if the IP cache mentioned in
Section V-A is fully populated with pre-implemented
modules and the flow uses the automated placement and
routing tools within RapidWright, fast implementations
can be achieved, enabling approaches such as HMFlow
[11] and TFlow [12] for Vivado.

As a point of reference, an example IPI MicroBlaze
design included with Vivado can be compiled in 232
seconds. In contrast, the same design compiles in 12.5
seconds in RapidWright with a full cache, almost 20×
faster at the expense of lower achieved fmax. Such pro-
ductivity increase can prove quite useful for emulation
applications with less stringent performance require-
ments. RapidWright includes all the components of this
flow and can easily be called with a single Tcl procedure
in Vivado/IPI. Thus, users will easily be able to run both
conventional and fast flows from the same IPI design
depending on their specific needs and use case.

Another way of improving productivity is through
faster debug compiles. Debugging on FPGAs, without
significant planning, has typically required expensive
recompiles of the design. Unfortunately, recompiling a
design exposes the user to additional unpredictability
that manifests in frustrating ways such as hiding a bug,
additional bugs, or other misunderstood behavior. Pre-
vious work has demonstrated feasibility of post imple-
mentation instrumentation [13][14] and this work applies
these techniques with commercial debugging tools.

Vivado provides an Integrated Logic Analyzer (ILA–
previously called ChipScope) that is inserted into a
netlist before place and route to provide the user visibil-
ity during runtime of the circuit. Using RapidWright, we
demonstrate a debug flow that adds an ILA and probe
routing to a design without disturbing existing placed
and routed logic.
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Table III
Post Implementation Debug Flow Results

Vivado This
Design CLB BRAM DSP Baseline Work ∆

dsp1 9% 0% 38% 1455s 42s 35×
10g 10% 6% <1% 260s 11s 24×
dsp2 20% 0% 78% 1057s 89s 12×
sparc 31% 10% <1% 973s 10s 97×
21ch 70% 93% 18% 1660s 50s 33×

The flow in Figure 7 reads a placed and routed DCP
into the RapidWright design instrumentor that identifies
nets marked for debug (previously annotated in Vivado)
and checks the cache for compatible ILAs. If a suitable
ILA instance is not found, RapidWright invokes Vivado
to place and route a compatible one and adds it to
the cache. Once a pre-implemented ILA is secured, it is
stitched directly into the top level netlist of the design
and probes are attached to the appropriate nets. After
ILA insertion, it is placed by the debug block placer.
Routing is quickly accomplished by a rudimentary router
provided in RapidWright that preserves existing routes
and only consumes unused resources.

We tested this flow with five different designs of
varying size and composition. All designs targeted the
xcku040-ffva1156-2-e (Kintex UltraScale) and used Vi-
vado 2016.1. Our baseline runtime comparison is the sum
total of Vivado’s opt_design (which adds the debug in-
strumentation logic), place_design and route_design
functions. To measure runtime for our flow, the sum total
runtime of the design instrumentor, Debug Block Placer
and Debug Probe Router is reported in Table III.

From Table III, it can been seen that the device
utilization ranged from 9% to 70% of CLBs and speedup
achieved ranged from 12-97×. Note that we report CLB
counts instead of LUTs as we do not attempt to par-
tially use CLBs. Selected designs were downloaded to
a KCU105 board and used in system with the Vivado
Hardware Manager to validate correct functionality.

C. Achieving Near Spec Performance
An overarching theme for improving either perfor-

mance or productivity of FPGA designs has been build-
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ing overlays or static shells. Overlays such as arrays
of soft processors aim to raise the design abstraction,
improving productivity. Static shells similar to that of
the AWS F1 platform are designed to lock down high
performance for a portion of the design. It is highly
desirable to achieve near spec performance for these
shells and overlays in order to improve the end figures of
merit in the overall application. RapidWright is an excel-
lent vehicle to build application-specific shells, especially
when customers require many variations.

In the remainder of this section, we build a global data
movement shell with near-spec performance leveraging
RapidWright capabilities. The design, which is built on
an AWS F1 instance, deploys a 128-bit LinkBlaze soft
NoC [16]. The pre-implemented module layout can be
seen in Figure 8a with router modules in red, forming a
U-shaped network around the left side of the chip.

The maximum clock rate on a VU9P-2 in the AWS
F1 instance is 775MHz, and our goal for this design
was to get as close to this frequency as possible for
the data movement shell. Using our pre-implemented
design strategy, we identified the best area constraints
and footprint sizes for the routers and network interfaces
(NIs) present in the design. Ultimately, we found that
combining the router with the high frequency portion
of the NI produced the best modular approach for per-
formance. We ran 88 different OOC runs per router/NI
instance to identify the best implementation possible by
varying various place and route parameters and provid-
ing a range of different clock uncertainty values during
placement. We provided a clock constraint of 800MHz
and 12 of the 88 runs successfully met the requirement.
Ultimately, the best run closed timing at 811MHz when
waiving the worst pulse width slack limit of 775MHz.

In our quest for near spec performance, signals cross-
ing SLR boundaries proved to be a significant hurdle.
An SLR is a die in a multi-die interposer-based device.

Inter-die wires need more stringent setup and hold time
requirements than intra-die fabric connections due to
higher path delay variance, complicating timing closure
in two ways. First, the dedicated SLR-crossing fast path
between TX and RX registers experiences hold violations
in most cases [17]. Second, Vivado imposes an inter-
SLR compensation (ISC) penalty on all inter-die paths.
We propose two strategies enabled by RapidWright to
alleviate these issues.

First, RapidWright places both dedicated TX and RX
registers, one on each side of the inter-die connection
to minimize the delay. We resolve hold time issues by
custom routing the clock in RapidWright such that each
set of RX and TX registers share a common leaf clock
buffer (LCB). RapidWright can then tune the LCB delay
to manage the hold time issues using a time borrow-
ing mechanism [18]. An 8% improvement over baseline
resulted from this technique as reported in the second
column of Table IV. An illustration of this approach for
a single directional path is shown in Figure 8b.

Our second strategy involves minimizing the ISC
penalty through custom clock routing in RapidWright.
The ISC penalty is a 15% tax of the clocking path
between a clock’s root and capturing state element. As
Vivado chooses a clock root to minimize global clock
skew (yellow star in Figure 8a), it is often several CRs
away from an SLR crossing. In contrast, RapidWright
can route dedicated clock roots for each SLR crossing
with one instance shown by the green star in Figure 8b,
moving the relevant clock root closer by more than 4
CRs. One consequence of adding a custom clock root for
each RX flop group is that time is borrowed from the
following and/or preceding path and thus can become
critical. To compensate, pipeline elements in the netlist
are moved closer to the relevant TX and RX registers.

Ultimately, as shown in Table IV, we were able to
achieve 730MHz, exceeding 94% of the device perfor-
mance capabilities and a 33% boost to initial per-
formance. This is a significant improvement to prior
literature [15] which only produced overlays utilizing
27% of available device performance. In the final call to
route_design in Vivado, congestion forces it to rip up
some of the timing optimal routes for sub-optimal ones.
Any efforts to preserve the timing optimal routes results
in an unroutable state. This issue is similar to that of
the ML design presented earlier in this section. Future
work will explore this congestion issue to further push
toward an implementation that meets the device spec.

Table IV
AWS LinkBlaze Design SLR Crossing Results

Vivado Baseline LCBs Final ∆

549MHz 595MHz 730MHz 33%



VI. Conclusion and Future Work

We have introduced RapidWright, an open source
platform that provides a new bridge to Vivado—enabling
customization of emerging FPGA applications. We also
proposed a new modular design methodology that im-
plements large designs by: (1) identifying common de-
nominator modules of the design (restructuring), (2)
strategically matching pre-implemented modules with
programmable fabric structures, and (3) leveraging an
automated RapidWright flow that stitches modules into
a final implementation. This work has demonstrated
a glimpse of potential benefits such as a 50% QoR
improvement or productivity improvements in compile
time and debug by an order of magnitude or more.

We believe RapidWright allows the FPGA commu-
nity to earnestly explore the boundaries of performance
and productivity, while enjoying the credibility of com-
mercial FPGA tools. With RapidWright enabling fine
grained control of clock routing and LCB delay manage-
ment, a new branch of FPGA implementation strategies
can emerge—boosting performance beyond previous ex-
pectations. We believe that enabling users to capture
custom crafted implementations will lead to significant
improvements in circuit performance, user productivity
and timing closure predictability.

We acknowledge that our methodology is more
amenable to designs with high reuse and latency tol-
erant kernels. However, as FPGAs play a larger role in
emerging and datacenter-acceleration applications, more
designs exhibit these favorable attributes. In an era of
push-button design flows and higher levels of abstrac-
tion, the friction of getting that first FPGA design im-
plementation may be reduced, but delivering end design
with maximum performance will require involvement
from FPGA application architects.

The open source nature of RapidWright empowers
application architects and power users of FPGAs to
explore innovative ways to liberate the full potential of
advanced silicon technology. We envision RapidWright
augmented by powerful algorithmic engines—such as
SAT and ILP solvers—to realize efficient, localized place-
ment and routing solutions with the help of the FPGA
community. Creating reusable, near-optimal, modular
implementations will lead to shells and overlays that will
unlock a class of accelerator designs rarely realized.

Author’s Note: The opinions expressed by the authors are
theirs alone and do not represent future Xilinx policies. To down-
load RapidWright code, examples, tutorials and documentation,
please visit www.rapidwright.io.
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