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ABSTRACT

As the complexity of programmable architectures increases with

advances in silicon process technology, there is a growing need

to extract greater productivity and performance from the tools.

Due to their inherent reconfigurability, FPGAs are proving to be

valuable targets for more efficient domain-specific architectures.

However, FPGA implementation tools are designed for a broad set

of applications.

In this paper we describe RapidWright, an open source frame-

work that enables customized implementations for Xilinx FPGAs.

RapidWright enables implementation tools that can take advan-

tage of the great potential of domain-specific attributesÐleading to

greater productivity and performance. The focus of this paper is to

provide an introductory reference of RapidWright and its use cases

so that others may be empowered to adapt their implementations

to their domain-specific applications.

CCS CONCEPTS

·Hardware→ Reconfigurable logic and FPGAs; · Computer

systems organization→ Reconfigurable computing;
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1 INTRODUCTION

RapidWright [1] is an open source platform with a gateway to

Xilinx’s back-end implementation tools (Vivado) that raises the

implementation abstraction while maintaining the full potential of

advanced FPGA silicon. RapidWright works synergistically with

Vivado through design checkpoints (DCPs, see Figure 1) to enable

highly customizable implementations. Vivado can produce highly
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Figure 1: Vivado and RapidWright DCP Compatibility

optimized implementations for key design modules to deliver the

highest performance. RapidWright can then replicate, relocate and

assemble these tuned modules to compose a complete application

and preserve high performance.

RapidWright’s native gateway to Vivado also sets the ground-

work for an ecosystem aimed at further advancing FPGA tools. It

empowers academic and industry researchers by combining the

commercial credibility of FPGA tools with the agility of an open

source framework, leading to innovative solutions that might not

be feasible otherwise.

This paper serves as a supplemental reference to the RapidWright

tutorial with an aim to provide some fundamentals about the frame-

work and introductory use cases. In the remainder of this paper we

describe RapidWright and its capabilities in Section 2, some exam-

ple use cases in Section 3 and conclude in Section 4. Supplementary

material on Xilinx architecture is included in Appendix A to help

orient the reader regarding specific RapidWright constructs.

2 RAPIDWRIGHT STRUCTURE

RapidWright is implemented in Java and distributed with a founda-

tional API library that provides access to design checkpoint (DCP)

files and Vivado-compatible device models. A high-level diagram

showing the organization of the project is shown in Figure 2. There

are three core Java packages (groups of classes) within RapidWight:

device, edif (logical netlist) and design (physical netlist) and this

section describes the purpose and composition of each one.
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Figure 2: RapidWright Structure

2.1 Device Package

The device package contains classes and APIs that correspond

to constructs in the silicon devices. The most prominent class in

this package is the Device class, which makes available all of the

architectural resources described in Appendix A. A device is supple-

mented by package, speed grade and temperature grade information

through the use of a Package class. When a device is combined

with its package and grade information, this uniquely identifies a

Xilinx part, represented by the Part class.

The Device class is the top level object in RapidWright and has

direct accessors to all other levels of hierarchy except for BELs

as shown in the first row of Table 1. In contrast to the other two

packages, the data provided in the device package is static. Most

of the interaction between a user’s design and the device occurs

at the Tile, Site and BEL levels of hierarchy. The BEL class can be

one of three kinds of non-routing objects in a Site: a Logic BEL,

a Routing BEL and a Port (of the Site). This is designated by its

class member enum of type BELClass. Most components within

the device architecture are assigned an integer index. This helps to

lower memory usage by eliminating the need to explicitly represent

a component of the architecture with a dedicated object. It also helps

by providing faster lookups. In some cases, such as TileTypeEnum

and SiteTypeEnum, the index has been explicitly enumerated and

an enum is used instead.

In parallel with the logical hierarchy of Xilinx devices, there are

several constructs for representing routing resources. At the lowest

level, pins on BELs are represented by the BELPin class. Pins on

Site objects can be referenced by creating dynamic objects of type

SitePin. Inside a Site, wires called łsite wiresž connect BELPin

objects. Connectivity of a site wire is stored with each BELPin and

also in the Site object. Site wires do not have an explicit object for

representation, but their name, index and connectivity are available

on Site and BELPin objects.

RapidWright provides the same inter-site routing resources as

Vivado, namely Wire, Node and PIP objects (see second row of

Table 1). These objects are generated on demand as there can be

several millions of unique instances of each.

2.2 EDIF Package (Logical Netlist)

In Vivado, all designs post synthesis have a logical netlist that

can be exported to the EDIF (Electronic Design Interchange For-

mat) netlist format. Vivado also includes EDIF in the design check-

point file format and has facilities to read and write it (read_edif

and write_edif). RapidWright reads, represents and writes logi-

cal netlist information in the EDIF format and the edif package

is written to accommodate this need. It was written with Vivado-

generated EDIF in mind and may not support every corner case of

the EDIF 2 0 0 specification.

The EDIFNetlist is the top level class that contains the netlist

and cell libraries. All EDIF-related objects have EDIF as a class name

prefix. The EDIFNetlist keeps a reference to the top cell which

is wrapped in the EDIFDesign class. It also maintains a top cell

instance reference that is generated when the file is loaded.

Although a full explanation of netlist modeling and relationships

are beyond the scope of this paper, an attempt to clarify the contex-

tual meaning of some of the classes will be made. One important dis-

tinction to make is between EDIFPort and EDIFPortInst. At one

level, an EDIFPort belongs to an EDIFCell and an EDIFPortInst

belongs to an EDIFCellInst. An additional distinction is that an

EDIFPort can be a bussed-based object whereas an EDIFPortInst

can only represent a single bit. An EDIFNet defines connectivity

inside an EDIFCell by connecting EDIFPortInst objects together

(port references on cell instances inside the cell or to external port

Table 1: RapidWright and Vivado Device Object Model Reference

RapidWright Class RapidWright Java API Vivado Class Property Vivado Tcl API

Device Device.getDevice(String partName) - -

SLR Device.getSLR(int id) slr get_slrs -filter SLR_INDEX==$id

ClockRegion Device.getClockRegion(String name) clock_region get_clock_regions $name

Tile Device.getTile(String name) tile get_tiles $name

Site Device.getSite(String name) site get_sites $name

BEL Site.getBEL(String name) bel get_bels -of $site -filter NAME==$name

PIP Device.getPIP(String name) pip get_pips $name

Wire Device.getWire(String name) wire get_wires $name

Node Device.getNode(String name) node get_nodes $name

SitePIP Site.getSitePIP(BELPin input) site_pip get_site_pips $name

SitePin Device.getSitePin(String name) site_pin get_site_pins $name

int (SiteWire) Site.getSiteWireIndex(String name) site_wire (Vivado GUI)

BELPin Site.getBELPin(String name) bel_pin get_bel_pins $name
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Figure 3: EDIF Data Structure Reference to Vivado Netlist View

references entering/leaving the cell). Figure 3 illustrates how Rapid-

Wright EDIF-based objects map to a Vivado netlist schematic view.

2.3 Design Package (Physical Netlist)

The design package is the collection of objects used to describe how

a logical netlist maps to a device netlist. A design is also referred

to as a physical netlist or implementation. It contains all of the

primitive logical cell mappings to hardware, specifically the cell

to BEL placements and physical net mapping to programmable

interconnect or routing.

The Design class in RapidWright is the central hub of infor-

mation for a design. It keeps track of the logical netlist, physical

netlist, constraints, the device and part references among other

things. The Design class is most similar to a design checkpoint in

that it contains all the information necessary to create a DCP file.

The remainder of this subsection describes the major object classes

found in the design package.

2.4 Cell (A BEL Instance)

At the lowest level, a RapidWright Cell maps a logical leaf cell

from the EDIF netlist (EDIFCellInst) to a BEL as shown in Figure 4.

The cell name is typically the full hierarchical logical name of the

leaf cell to which it maps. A cell also maintains the logical cell pin

mappings to the physical cell pin mappings (BELPins).

Device

Site

BEL

Design

SiteInst

Cell

Figure 4: Shows mapping between BEL/Cell, Site/SiteInst

and Device/Design.

2.5 SiteInst

Design representation and implementation in Vivado is BEL-centric

(BELs and cells). The SiteInst keeps track of three major map-

pings/attributes:

(1) Map of all cells to BELs (placements in site)

(2) Activated Site PIPs (intra-site routing)

(3) Nets to Site Wires (intra-site routing)

Each SiteInst maps to a single, compatible site within a device.

The SiteInst is configured to a type using a SiteTypeEnum that

is either the primary type or an alternate site type of the host site.

RapidWright also preserves the same Vivado łfixedž flag which is
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Figure 5: Logical netlist view of a particular physical net

used in certain situations to prevent components inside the site

from being moved.

Routing nets inside of a site (intra-site) is different from routing

outside of sites (inter-site) and the SiteInst maintains all relevant

information concerning intra-site routing. Routing inside of a site

must account for placed cells, their type and context. In general,

when constructing placed and routed logic, it can be beneficial to

compare SiteInst content from Vivado-generated implementa-

tions to ensure correctness. This can be done by loading placed

and routed DCPs from Vivado into RapidWright and querying the

respective SiteInst objects to establish patterns for site wire and

site PIP usage.

Routing is accomplished inside a site through SitePIPs, which

establish a connection through routing BELs and some logic BELs

(such as LUTs). The SiteInst object in RapidWright maintains

site PIP usage. By default, all site PIPs are turned off. If a SitePIP

is added to the SiteInst then it is marked as being turned on or

used.

2.6 Net

A Net in RapidWright contains the routing information to physi-

cally connect placed cells using device interconnect or PIPs. Many

logical nets map to the same physical net, for example, consider

the net depicted in Figure 5. This figure shows the logical netlist

connection of three cells over one physical net. However, there are

11 separate logical nets (represented in RapidWright by a EDIFNet)

in the logical netlist that must be traversed in order to make the

connection. In contrast, Figure 6 shows one physical net for all

logical nets.

The implementation of a physical net is stored as a collection of

PIPs. PIPs connect nodes together and specify a path from a site

pin source to one or more site pin sinks. These instances of site pins

are represented by SitePinInst objects (instances of SiteInst

objects). The rest of the physical net implementation (intra-site

routing) is stored in a SiteInst where a path from site pins to BEL

pins is described using annotated site wires and SitePIPs.

2.7 Module

A Module in RapidWright is a physical netlist container, which is

a collection of SiteInst and Net objects that describe an abstract

Figure 6: Physical netlist view of a particular physical net

definition of an implementation. This object is unique to Rapid-

Wright and is one of its enabling constructs that allows placed

and routed information to be preserved, relocated and replicated.

A module contains both the logical and physical netlist elements

and corresponds to a hierarchical cell within a netlist. It is similar

to a placed and routed out-of-context DCP, however RapidWright

enables the implementation to be replicated or relocated to multiple

compatible areas of the fabric.

A RapidWright module is represented by the Module class in the

design package. A module is a definition object whose SiteInst

and Net objects specify a blueprint for a pre-implemented block that

can potentially be ‘stamped’ out and relocated in valid locations

around a device. The ModuleInst represents the instance object

of a Module and is part of the implemented portion of a physical

netlist.

2.8 Module Instance

A ModuleInst is an instance of a Module. Typically, definitions

of a hierarchical cell are captured in a Module and then ‘stamped

out’ using the module instance construct in a design. The placed

and routed locations of the SiteInst and PIPs found in the Nets

are relatively relocated according to the desired offset during in-

stantiation or re-location. Modules typically pre-calculate all valid

placement locations ahead of time and are stored with the module

to make instantiation and placement fast.



ModuleInsts, like Modules, are a collection of SiteInst and

Net objects. Each of these object names are prefixed with the name

of the ModuleInst, for example, if a module had a SiteInst named

łSLICE_X2Y2ž and a Net named data_ready, a newly created mod-

ule instance named łfredž would have counterpart SiteInst and

Net objects called łfred/SLICE_X2Y2ž and łfred/data_ready.ž

The Module and ModuleInst constructs are not available in Vi-

vado or the DCP file format. Therefore, if these constructs are used

in a RapidWright design they will be ‘flattened’ when written out

as a DCP.

3 RAPIDWRIGHT USE CASES

RapidWright provides a unique set of capabilities not readily avail-

able using Vivado alone. Some of these capabilities include direct

creation of placed and routed circuits, parameterizable circuit gen-

erators and module reuse through pre-implemented modules. This

section briefly introduces these concepts as a primer of RapidWright

capabilities.

3.1 Direct Synthesis of Placed and Routed
Circuits

RapidWright is designed with sufficient capabilities to produce

completely valid placed and routed circuits from scratch. It is not

recommended to pursue this approach for large or complex designs,

but it can be extremely useful in situations where a well-defined

implementation is desired.

The circuit in Figure 7 is created, placed and routed using Rapid-

Wright code in Listing 1. Although this łhello, worldž example is

simple, it provides a small glimpse of the possibilities RapidWright

has to offer. This circuit is a two-input AND gate packed into a LUT

targeting the Zynq device on a PYNQ-Z1 board. It connects two

button inputs to an output LED and will only illuminate if both

buttons are pressed.

At runtime, the code is able to load the device model for a Zynq

7020 part, create the netlist, place the cells, route their interconnec-

tions and write out a DCP file in less than two seconds. Note that

RapidWright provides APIs that both create cells in the netlist and

places them on the device. For each Cell created, an EDIFCellInst

is created and instantiated in the EDIFNetlist of the Design. This

example also shows that intra-site routing and inter-site routing

are separate APIs to allow for greater flexibility in implementation.

button0

button1

D19

D20

R14

led0

and2 (LUT2)

xc7z020clg400-1

3.3V

PYNQ-Z1

Figure 7: RapidWright łhello, worldž Example

// Create a new empty design using the PYNQ-Z1 device part

Design d = new Design("HelloWorld",Device.PYNQ_Z1);

// Create and place all the design elements (LUT2, and 3 IOs)

String placementLoc = "SLICE_X100Y100/A6LUT";

String v = "LVCMOS33";

Cell and2 = d.createAndPlaceCell("and2", Unisim.AND2, placementLoc);

Cell button0 = d.createAndPlaceIOB("button0", PinType.IN , "D19", v);

Cell button1 = d.createAndPlaceIOB("button1", PinType.IN , "D20", v);

Cell led0 = d.createAndPlaceIOB("led0" , PinType.OUT, "R14", v);

// Connect Button 0 to the LUT2 input I0

Net net0 = d.createNet("button0_IBUF");

net0.connect(button0, "O");

net0.connect(and2, "I0");

// Connect Button 1 to the LUT2 input I1

Net net1 = d.createNet("button1_IBUF");

net1.connect(button1, "O");

net1.connect(and2, "I1");

// Connect the LUT2 (AND2) to the LED IO

Net net2 = d.createNet("and2");

net2.connect(and2, "O");

net2.connect(led0, "I");

// Route intra-site nets (portions of net in a site)

d.routeSites();

// Route inter-site nets (between sites)

new Router(d).routeDesign();

// Save our work in a Design Checkpoint file

d.writeCheckpoint("HelloWorld.dcp");

Listing 1: RapidWright łhello, worldž Code Example

3.2 Parameterizable Circuit Generators

RapidWright’s ability to create fully placed and routed circuits from

scratch enables a new class of design we call generators. Several pa-

rameterizable circuit generators are included with the RapidWright

distribution. One significant example is the parameterizable SLR

crossing generator which can produce a DCP solution within a few

seconds. This SLR crossing generator targets UltraScale+ devices as

they have the architectural capabilities that enable clocking tech-

niques that achieve near-spec (>700MHz) performance (UltraScale

and Series 7 devices, do not possess these capabilities).

The generator will create pairs of flip flops in a netlist for each

crossing signal and will place them at the appropriate Laguna sites

to leverage the dedicated super long line (SLL) interconnect paths.

As mentioned in [1], using both dedicated RX and TX Laguna site

flops will often produce hold time violations. RapidWright is able

to circumvent this issue by routing the clock in such a way that

all TX and RX flops are connected exclusively to the same clock

arm. This enables a tuning of the clock delay at the common leaf

clock buffer for each group of crossing signals in each direction

respectively.

Additionally, the SLR crossing generator can potentially create

a custom clock root for each SLR crossing group (crossings in

the same clock region) to minimize the inter-SLR compensation

timing penalty. By fabricating the netlist, placing the flops onto the

dedicated RX and TX Laguna sites and custom routing the clock

to tune leaf clock buffers and create clock roots, the generator is

able to create a placed and routed DCP of an SLR bridge in a few

seconds.
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3.3 A Modular Pre-implemented Methodology

One of the key attributes of RapidWright is the ability to capture

optimized placement and routing solutions in a module and reuse

them in multiple contexts or locations on a device. Vivado often

provides good results for small implementation problems (smaller

than 10k LUTs within a clock region). However, as design size

grows, it is no longer practical to find near-optimal solutions within

a short compile time. We show how to preserve and reuse high

quality solutions in RapidWright with pre-implemented modules,

and propose a methodology of how they can improve the overall

system performance in a large design.

3.3.1 Pre-implemented Modules. Pre-implemented modules are

self-contained netlist cells that contain relative placement and rout-

ing information (generally with a rectangular footprint) targeting

a specific FPGA device. RapidWright generates pre-implemented

modules by invoking Vivado to synthesize, place and route them

out-of-context (OOC) of the original design. RapidWright then pre-

serves and packages the placement and routing information from

the OOC DCP as a RapidWright Module (see Section 2.7).

For a pre-implemented module to be reusable, it often needs

to be area constrained with a pblock with the additional property

CONTAIN_ROUTING=1. This ensures that placement and routing of

the module is restricted to the respective rectangle, reducing its

footprint such that it has a higher number of compatible placement

locations across the device.

3.3.2 Design Strategy and Flow. RapidWright endows users with

a new design vocabulary by caching, reusing and relocating pre-

implemented blocks. We believe this to be an enabling concept and

offer a high performance design strategy as depicted in Figure 8.

The first step requires the design architect to select and/or re-

structure a proposed design such that it can take full advantage

of the benefits provided by pre-implemented modules. We define

restructuring as a design refactoring that reflects three favorable

design characteristics: (1) modularity, (2) module replication and (3)

latency tolerance. Modularity uncovers design structure so it can

be strategically mapped to architectural patterns. When modules

are replicated, reuse of those high quality solutions and architec-

tural patterns can be exploited to increase the benefits. Finally, if

the modules within a design tolerate additional latency, inserting

pipeline elements between them improves both timing performance

and relocatability.
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After the design architect has successfully restructured and mod-

ularized a design, step two of Figure 8 is followed. Here, the design

architect creates an implementation guide file (see Section 3.3.3)

that captures how best to map the modules of a design to the archi-

tecture of the target device. Specifically, pblocks (area constraints)

are chosen for those pre-implemented modules of interest and phys-

ical locations are chosen for each instance. This step provides the

design architect an opportunity to navigate FPGA fabric discontinu-

ities. These discontinuities include boundaries such as IO columns,

processor subsystems, and most significantly, SLR crossings. Such

architectural obstacles cause design disruptions when targeting

high performance. However, by leveraging the pre-implemented

methodology provided in RapidWright, custom-created implemen-

tation solutions can be identified and planned out to manage the

fabric discontinuities by custom module placement. Ultimately, this

process is iterative and can inform useful RTL/design changes by

focusing design structure to better match architectural resources.

Step three of the design strategy is an automated flow provided

with RapidWright, whose details are denoted in Figure 9. We lever-

age Vivado IP Integrator (IPI)[7] for design input. IPI offers an

interactive block-based approach for system design by providing

an IP library, IP creation flow and IP caching. RapidWright takes ad-

vantage of IPI by using leaf IP blocks as de-facto pre-implemented

blocks and also by leveraging the IP caching mechanism. The Rapid-

Wright pre-implemented flow extends the caching mechanism to

go beyond synthesis, by performing OOC placement and routing

on the block within a constrained area. The flow begins by invoking

Vivado’s typical IPI synthesis and creating pre-implemented blocks

for each module if not already found in the cache. RapidWright has

an IPI Design Parser (EDIF-based) that creates a black-box netlist

where each instance of a module is empty, ready to receive the

pre-implemented module. The block stitcher reads the IP cache

and populates the IPI design netlist. After stitching, the blocks are

placed according to the implementation guide file from the design

architect. Once all the blocks are placed, RapidWright creates a

DCP file that is read into Vivado that completes the final routes.

3.3.3 Implementation Guide File. An implementation guide file

(extension *.igf) allows the application architect to communicate all

of the specific implementation customization aspects of the packing

and placement phase. An example snippet of an implementation

guide file can be seen in Figure 10.



…
BLOCK 0ef89acfd382a03f 4 5 2  

IMPL 0 SLICE_X157Y0:SLICE_X162Y19 RAMB36_X11Y2:RAMB36_X11Y3  

IMPL 1 SLICE_X138Y0:SLICE_X142Y19 RAMB36_X9Y2:RAMB36_X9Y3  

IMPL 2 SLICE_X112Y0:SLICE_X116Y19 RAMB36_X8Y2:RAMB36_X8Y3  

IMPL 3 SLICE_X0Y240:SLICE_X10Y251 RAMB36_X0Y48:RAMB36_X0Y49  

INST router_ni_0  0 SLICE_X157Y0  

INST router_ni_1  1 SLICE_X138Y0  

INST router_ni_2  2 SLICE_X112Y0  

INST router_ni_10 3 SLICE_X0Y180  

INST router_ni_11 3 SLICE_X0Y240  

CLOCK clk 1.0 BUFGCE_X1Y96  

CLOCK client_clock 2.5 BUFGCE_X1Y118

END_BLOCK

…

Vivado IP Cache ID

Tcl: config_ip_cache -get_id

[get_ips <ip_name>]

PBlock Implementations
This block has 4 different placement 

and routing implementations

Pblock
Each implementation will be area 

constrained for both placement and routing

Block Instances
This block has 5 instances of the same 

IP/block

Implementation Index
Assigns this instance to use a specific 

placement and routing (IMPL) PBlock

Clock Constraints
This block has 2 clocks, constraints are 

used during place and route to achieve 

higher quality results

Placement: Lower Left Corner
Each block instance is placed such that its 

lower left corner aligns to (inclusive) this site

Clock Period Constraint
Specifies the clock period constraint in 

nanoseconds

Clock Buffer Location
Out-of-context implementation uses this to 

estimate clock skew for more accurate timing

Figure 10: Implementation Guide File (*.igf) Example

The block construct describes all of the potential implementa-

tions for a particular block/IP. For each uniquely configured IP

(entry in the IP cache), there exists a block. Multiple instances of

the same block/IP can exist and this construct allows the application

architect to map instances by name to a specific implementation.

Each block has one or more IMPLs. Each implementation carries

a pblock and potentially some SUB_IMPL which allows for sub

pblocks to be applied to portions of the logic inside the block. Each

IMPL is indexed so that it can be referenced and applied to spe-

cific instances of the block. The application architect takes special

care in selecting implementations and their pblocks to maximize

there potential performance, architectural footprint and placement

packing efficiency.

The SUB_IMPL is an optional construct that allows finer-grained

pblocks to be applied to a partial subset of the block/IP in an imple-

mentation. One field requires a Tcl command that returns a subset

of cells that should be included in the sub implementation and as-

sociated pblock. Multiple sub implementation entries can exist for

each implementation. For example, if a particular IP is tall and nar-

row and there are specific cells that need to be placed at the top and

bottom, the SUB_IMPL construct can be used to pblock the top and

bottom specific cells in sub pblock of the overall implementation.

In each design, there will be one or more instances of a block/IP.

Each instance has a unique name and must be assigned to an im-

plementation. Each instance also requires a placement which is

provided by denoting a specific site onto which the lower left cor-

ner of the pblock of the respective implementation could be placed.

The clock construct describes a clock input to the block or IP and

allows it to apply a clock period constraint in nanoseconds. It also

requires the BUFGCE site from which the clock will be driven so

that during placement and routing, the clock skew can be estimated.

4 CONCLUDING REMARKS

We have provided an introductory overview and use cases for Rapid-

Wright. RapidWright enables an implementation vocabulary that

lays the ground work for next generation domain-specific tools

targeting FPGAs. As FPGAs present a valuable platform for domain-

specific architectures, the tools’ productivity and performance will

become even more critical to the success of a project. We invite in-

dustry and academic researchers to help us build a new generation

of domain-specific tools that will further capitalize on the potential

of FPGAs.

Formore examples, documentation and tutorials on RapidWright,

please visit www.rapidwright.io.

A APPENDIX: XILINX ARCHITECTURE

RapidWright is an implementation-centric framework targeting

Xilinx FPGAs and to use it effectively, an understanding of Xil-

inx FPGA architecture will be needed. RapidWright presents the

same constructs and device representations found in Vivado’s de-

vice model. A cross-reference between RapidWright and Vivado

objects/APIs is shown in Table 1. There are there are six major

levels of hierarchy used to implement logic as shown in the first

row of Table 1: Device, SLR, ClockRegion, Tile, Site and BEL. These

six logic hierarchy levels are also illustrated in Figure 11. There are

also several wiring and interconnect constructs related to routing

listed in row 2 of Table 1: PIP, Wire, Node, SitePIP, SitePin, SiteWire

and BELPin. With the exception of SitePIP, these are illustrated in

Figure 12. The remainder of this section will briefly describe each

of the six logical hierarchy objects with routing objects described

in their context.

A.1 BEL (Basic Element of Logic)

The atomic unit of Xilinx FPGAs is a basic element of logic (BEL).

There are two kinds of BELs, Logic BELs and Routing BELs. A Logic

BEL is a configurable logic-based site that can support the imple-

mentation of a design cell (such as a LUT or flip-flop). Each BEL

can support one or more types of UNISIM cells (UNISIM cells are

described in [4] for Series 7 devices and [6] for UltraScale devices).

The mapping between a leaf cell in the netlist and a BEL site is
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Figure 12: Intersite and Intrasite Routing Resources

referred to as the łplacementž of the cell. Non-leaf cells represent hi-

erarchy of the netlist and do not require placement. Thus, when one

runs the Vivado command place_design, it is essentially mapping

all leaf cells in the netlist to compatible and legal BEL sites.

Routing BELs are programmable muxes used to route signals

between BELs. Routing BELs do not support any design elements

(logic cells from the netlist do not occupy routing BEL sites). How-

ever, some routing BELs do have optional inversions.

BELs have input and output pins and configurable connections

that connect an input pin to an output pin. These BEL-based config-

urable connections are called site PIPs (Programmable Interconnect

Points). Both logic BELs and routing BELs can have site PIPs. How-

ever, in the case of a logic BEL, the site must be unoccupied by a cell

for the site PIP to be usable. These site PIPs, when implemented in

logic BELs (such as a LUT), are called łroute-thrus.ž When routing

a design, it is sometimes necessary to route through unused LUTs

(or other BELs) using site PIPs to complete a route.



A.2 Site

A group of related elements and their connectivity is referred to as

a site. Inside a site, one can find three major categories of objects:

(1) BELs (Logic BELs and/or Routing BELs)

(2) Site Pins (External input and output pins to the site)

(3) Site wires (connecting elements to each other and site pins)

Sites are instances of a type and each site has a unique name

with an _X#Y# suffix denoting its location in the site type grid. Each

site type will have its own XY coordinate grid, independent of other

types. The only exception are SLICEL and SLICEM types that share

the same grid space. SLICEL and SLICEM are the most common

site types and are the basic configurable logic building blocks that

contain LUTs and flip flops replacing the backbone of the FPGA

fabric.

A.3 Tile

A collection of sites is packaged into a tile, although several tiles

do not have sites. At an abstract level, Xilinx devices are created by

assembling a grid of tiles. Similar to sites, each tile is an instance of

a type and each tile has a unique name with an _X#Y# suffix. Tiles

are designed to abut one another when laid down to construct an

FPGA device.

Unlike sites and BELs, tiles do not have user visible pins. Instead,

tiles contain uniquely-named wires that can connect to site pins or

PIPs. In the context of a tile, PIPs connect two tile wires together.

Most PIPs are present in switch box tiles (those with the łINTž

prefix). Columns of switch box tiles are designed to connect to all

fabric resources such as CLBs, DSPs, and BRAMs. When tiles abut,

they are designed such that certain wires in the adjoining tiles line

up and connect as shown in Figure 13.

INT CLEL_R

EE2_W_BEG5 EASTBUSIN_FT0_21

Figure 13: Two wires in abutting tiles

As there are no pins on tiles, instead cross-tile connectivity is

represented by a node. A node is a collection of electrically con-

nected wires that spans one or more tiles. Figure 14 shows how

four wires in four tiles abut to form a node.

A.4 FSR (Fabric Sub Region or Clock Region)

A fabric sub region, also known as a clock region, is a replicated 2D

array of tiles in the fabric. Xilinx uses a column-based architecture

where each column of tiles are generally of the same type. In the

UltraScale architecture, all FSRs are 60 CLBs (common logic block

tiles) tall, but their width will vary depending on the mix of tile

types used in its construction.

Clock routing and distribution lines are represented at the same

granularity as clock regions. In UltraScale architectures, there are

INT_X12Y101 CLEL_R_X12Y101 INT_X13Y101CLE_M_X13Y101

EE2_W_BEG5 EASTBUSIN_FT0_21 EE2_W_END5

EASTBUSIN_FT0_21

Figure 14: A node composed of four wires in tile context

24 horizontal routing tracks, 24 vertical routing tracks, 24 horizon-

tal distribution tracks and 24 vertical distribution tracks per clock

region. These routing and distribution tracks abut to tracks in neigh-

boring clock regions to form the device clock network resource set.

Additional information specific to clocking resources can be found

in [2] for Series 7 devices and [3] for UltraScale devices.

A.5 SLR (Super Logic Region)

A super logic region (SLR) is a 2D grid of FSRs. This level of hierar-

chy is only relevant on devices that use stacked silicon interconnect

technology (SSIT ś also known as 2.5D), essentially a packaging

of multiple die together with a silicon interposer. Each die in a

multi-die device is an SLR.

In order for logic to communicate between SLRs, the UltraScale

architecture employs special łLagunaž tiles in the FSRs neighboring

the abutment of two SLRs. Laguna tiles have dedicated flip flop sites

to aid in crossing the SLR divide.

A.6 Device

At the highest level of Xilinx architecture is the device. This en-

capsulates any and all SLRs present. The device object in Vivado is

implicit (not directly referenced) but only one device can be loaded

at a time. The core object in RapidWright is the Device class for

any Xilinx device as described in Section 2.
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