
RapidWright Documentation
Release 2025.1.0-beta

AMD Research and Advanced Development
Copyright 2018-2023, Advanced Micro Devices, Inc.

Jun 25, 2025

CONTENTS

1 Introduction 1
1.1 What is RapidWright? . 1
1.2 Why RapidWright? . 1
1.3 What about RapidSmith? . 2
1.4 Vivado and RapidWright . 2

2 Getting Started 5
2.1 Quick Start . 5
2.2 Install . 6
2.3 RapidWright Eclipse Setup . 10
2.4 RapidWright IntelliJ Setup . 22
2.5 RapidWright Jupyter Notebook Kernel Setup . 26

3 FPGA Architecture Basics 33
3.1 What is an FPGA? . 33
3.2 CPU vs. FPGA . 33
3.3 Lookup Tables (LUTs) . 34
3.4 State Elements . 37
3.5 Carry Chains . 37
3.6 DSP Blocks . 37
3.7 Block RAMs . 37

4 Xilinx Architecture Terminology 39
4.1 BEL (Basic Element of Logic) . 39
4.2 Site . 41
4.3 Tile . 43
4.4 FSR (Fabric Sub Region or Clock Region) . 44
4.5 SLR (Super Logic Region) . 44
4.6 Device . 44

5 RapidWright Overview 45
5.1 Device Package . 45
5.2 EDIF Package (Logical Netlist) . 47
5.3 Design Package (Physical Netlist) . 49

6 Design Checkpoints 53
6.1 What is a Design Checkpoint? . 53
6.2 What is Inside a Design Checkpoint? . 53
6.3 RapidWright and Design Checkpoint Files . 53

7 Implementation Basics 55

i

7.1 Placement . 55
7.2 Routing . 56

8 Merging Designs 59
8.1 Customizing Merge Behavior . 59

9 Bitstream Manipulation 63
9.1 Disclaimer . 63
9.2 Overview . 63
9.3 Bitstream Packet Model . 64
9.4 Configuration Array Model . 68
9.5 Example Usages: Modify User State Bits . 68
9.6 Example Usages: Find and Print the Frames of a Placed Cell . 69

10 FPGA Interchange Format 71
10.1 What is the FPGA Interchange Format? . 71
10.2 What does the FPGA Interchange Format enable? . 71
10.3 How is RapidWright related to the FPGA Interchange Format? . 71
10.4 Additional Resources . 71

11 RapidWright Publications 73
11.1 Original RapidWright Publication - FCCM 2018 . 73
11.2 Additional RapidWright Publications . 73
11.3 Community Competitions . 73
11.4 Select Community Publications . 74

12 A Pre-implemented Module Flow 75
12.1 Background and Flow Comparison . 75
12.2 High Performance Flow . 76
12.3 Rapid Prototyping Flow . 79

13 RapidWright Tutorials 83
13.1 RWRoute Timing-driven Routing . 83
13.2 RWRoute Wirelength-driven Routing . 88
13.3 RWRoute Partial Routing . 90
13.4 RapidWright Report Timing Example . 93
13.5 Reuse Timing-closed Logic As A Shell . 98
13.6 Use DREAMPlaceFPGA to Place a Netlist via FPGA Interchange Format 108
13.7 Polynomial Generator: Placed and Routed Circuits in Seconds . 113
13.8 Inserting and Routing a Debug Core As An ECO . 122
13.9 Create Placed and Routed DCP to Cross SLR . 134
13.10 Build an IP Integrator Design with Pre-Implemented Blocks . 138
13.11 RapidWright PipelineGenerator Example . 138
13.12 RapidWright PipelineGeneratorWithRouting Example . 145
13.13 Pre-implemented Modules - Part I . 149
13.14 Pre-implemented Modules - Part II . 159
13.15 Create and Use an SLR Bridge . 166
13.16 RapidWright FPGA 2019 Deep Dive Tutorial . 172
13.17 RapidWright FCCM 2019 Workshop . 174
13.18 RapidWright FPL 2019 Tutorial . 174
13.19 RapidWright ICCAD 2023 Hands-on Tutorial . 176

14 Tech Articles 179
14.1 Call RapidWright from C/C++ Using GraalVM . 179
14.2 Using RapidWright Directly in Python 3 . 183

ii

14.3 Setup JUnit 5 Tests in RapidWright . 187
14.4 RapidWright Data Files . 191

15 Frequently Asked Questions 193
15.1 I can’t open my DCP in RapidWright, I get ‘ERROR: Couldn’t determine a proper EDIF netlist to

load with the DCP file . . . ’, what should I do? . 193
15.2 Can RapidWright be used for designs targeting the AWS F1 platform? 193
15.3 When should I use RapidWright and when should I use Vivado? . 193
15.4 What languages does RapidWright support, and how do I interact with them? 194
15.5 Why is the framework called RapidWright? . 194
15.6 Can RapidWright generate bitstreams? . 194
15.7 Does RapidWright provide device timing information? . 194
15.8 Does RapidWright support partial reconfiguration (PR)? . 194
15.9 Is there any published work on RapidWright? . 194

16 Glossary 197

Index 199

iii

iv

CHAPTER

ONE

INTRODUCTION

Table of Contents

• Introduction

– What is RapidWright?

– Why RapidWright?

– What about RapidSmith?

– Vivado and RapidWright

1.1 What is RapidWright?

RapidWright is an open source Java framework that enables netlist and implementation manipulation of modern Xilinx
FPGA and SoC designs. It compliments Xilinx’s Vivado® Design Suite and provides developers with capabilities such
as:

• Fast loading accurate device model views for all Vivado-supported Xilinx devices (Series 7, UltraScale™, and
UltraScale+™)

• Reads and writes unencrypted Vivado Design Checkpoint files (.dcp)

• Hundreds of APIs to help build customized solutions to a wide variety of implementation challenges

• Examples of how to pre-implement (pre-place and pre-route) IP, relocate such blocks and compose pre-
implemented blocks together

Note: RapidWright is not an official product from Xilinx and designs created or derived from it are not warranted.
Please see LICENSE.TXT for full details.

1.2 Why RapidWright?

We believe that when people are empowered to create tailored solutions to their own specific challenges, innovation
takes place. We are building RapidWright to be an environment that fosters this caliber of innovation. The commercial
FPGA CAD world is in the unfortunate state of being closed source. We hope that with the release and continued
development of RapidWright, we can change the status quo of how we develop and interact with FPGAs.

RapidWright’s mission is to:

1

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/about/generation-ahead-16nm.html
https://www.xilinx.com/about/generation-ahead-16nm.html
https://github.com/Xilinx/RapidWright/blob/master/LICENSE.TXT

RapidWright Documentation, Release 2025.1.0-beta

• Facilitate rapid creation of custom design implementation solutions for FPGAs

• Foster an ecosystem of research and development in academia and industry

• Be fast, efficient, light-weight and easy-to-use

• Serve as a platform that can grow into an open source FPGA implementation flow (future work)

1.3 What about RapidSmith?

RapidWright is a next generation RapidSmith. Previously, RapidSmith was created to enable FPGA CAD tool creation
for older Xilinx devices, specifically those supported under ISE. RapidSmith is dependent on the Xilinx Design Lan-
guage (XDL) which was discontinued in Vivado. Therefore, RapidSmith doesn’t work with newer devices supported
exclusively in Vivado (although some valiant efforts have been made to bridge the gap1,2).

RapidWright has been significantly overhauled from its parent RapidSmith code. The FPGA device model is cleaner,
more data rich, is faster, more memory efficient and adds several insights and capabilities from the Vivado design
paradigm. A distinguishing and enabling capability of RapidWright is its ability to read and write unencrypted Vivado
Design Checkpoint files. It also maintains full representation of both the logical and physical netlist of FPGA designs.

1.4 Vivado and RapidWright

The Vivado Design Suite is the tool environment for developing and implementing designs for Xilinx FPGAs and
SoCs. Vivado provides both a GUI environment and a Tcl scripting interface to control the various tools and steps
involved in development. The Tcl scripting interface is quite powerful in that it provides users with hundreds of
commands to manipulate their design. However, despite the breadth of functionality that the Tcl interface offers, it
does have some shortcomings.

• First, some tasks that a user would want to complete using Tcl constructs and commands takes an inordinate
amount of runtime making the task infeasible, especially for large designs. For example, attempting to import
routing information via Tcl commands for a full design can take several hours or days.

• Second, constructing large, complex operations out of Tcl commands can be inefficient due to its interpreted
nature. Many users would also prefer a more mainstream object oriented language with wider support for
developing solutions.

• Lastly, if the user wants a particular capability that is not available in the provided library of Tcl commands in
Vivado, there is generally no alternative.

RapidWright addresses these shortcomings by providing a means to import, modify and export Vivado-based designs
independent of the Tcl interface. It achieves this capability by providing APIs that can read and write design checkpoint
files (Vivado’s design file format) into and out of the RapidWright framework as illustrated below.

1 White, Brad S., “Tincr: Integrating Custom CAD Tool Frameworks with the Xilinx Vivado Design Suite” (2014). All Theses and Dissertations.
4338. http://scholarsarchive.byu.edu/etd/4338

2 Townsend, Thomas James, “Vivado Design Interface: Enabling CAD-Tool Design for Next Generation Xilinx FPGA Devices” (2017). All
Theses and Dissertations. 6492. http://scholarsarchive.byu.edu/etd/6492

2 Chapter 1. Introduction

http://rapidsmith.sourceforge.net/
https://www.xilinx.com/products/design-tools/vivado.html
http://scholarsarchive.byu.edu/etd/4338
http://scholarsarchive.byu.edu/etd/6492

RapidWright Documentation, Release 2025.1.0-beta

RapidWright includes a compact, fast-loading device model and hundreds of APIs to help manipulate implementations.
These capabilities will enable users to develop new implementation strategies and capabilities that have not been
available previously in Vivado. We believe RapidWright provides a foundational framework that opens the door for
innovation in the FPGA CAD space.

1.4. Vivado and RapidWright 3

RapidWright Documentation, Release 2025.1.0-beta

4 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

How would you like to use RapidWright?

• Quick Start – “Just want to try it out”

• Install – “Ready to write code”

Setting up Development Environments

• RapidWright Eclipse Setup

• RapidWright IntelliJ Setup

• RapidWright Jupyter Notebook Kernel Setup

2.1 Quick Start

Note: The only major prerequisite is Java (1.8 minimum, 11 or later recommended) - Any distribution such as
Adoptium should work

Download and run the latest stand-alone RapidWright release jar file: Linux | Windows:

Linux:

wget https://github.com/Xilinx/RapidWright/releases/download/v2023.1.0-beta/
→˓rapidwright-2023.1.0-standalone-lin64.jar
java -jar rapidwright-2023.1.0-standalone-lin64.jar

Windows:

curl -L -O https://github.com/Xilinx/RapidWright/releases/download/v2023.1.0-beta/
→˓rapidwright-2023.1.0-standalone-win64.jar
java -jar rapidwright-2023.1.0-standalone-win64.jar

This will start the RapidWright Jython (Python 2 in Java) interpreter with most RapidWright classes loaded. You can
test your install by running the following at the prompt:

>>> DeviceBrowser.main([])

You should see the GUI come up similar to this screenshot:

5

https://adoptium.net/
https://github.com/Xilinx/RapidWright/releases/download/v2023.1.0-beta/rapidwright-2023.1.0-standalone-lin64.jar
https://github.com/Xilinx/RapidWright/releases/download/v2023.1.0-beta/rapidwright-2023.1.0-standalone-win64.jar
http://www.jython.org

RapidWright Documentation, Release 2025.1.0-beta

If you have gotten to this point, congrats! Your RapidWright install is correctly configured and you are ready to start
experimenting.

Note that the standalone jar comes pre-packaged with a few select devices:

• AWS-F1: Virtex UltraScale+ VU9P (xcvu9p)

• PYNQ-Z1: Zynq 7020 (xc7z020)

• Virtex UltraScale VU440 (xcvu440)

Additional devices are downloaded over the Internet on demand when the code attempts to load them. See RapidWright
Data Files for more details.

2.2 Install

2.2.1 TL;DR

git clone https://github.com/Xilinx/RapidWright.git
cd RapidWright
./gradlew compileJava
export PATH=`pwd`/bin:$PATH

6 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

2.2.2 What You Need to Get Started

1. Java (1.8 minimum, 11 or later recommended) - Any distribution such as Adoptium should work. If you already
have Vivado, it includes Java, see Using Java distributed with Vivado below on how to use it.

2. Git (source revision control system)

3. [Optional] If you are running Linux and want to run the GUI portion of RapidWright, you may need an older
libpng12 library. For those running Debian/Ubuntu-based distros, try the following:

Warning: Older versions of libpng have been found to have several vulnerabilities and is only needed for GUI
use. Installing this deprecated library should be taken with caution based on the risk of the operating environment.

wget -O /tmp/libpng12.deb https://snapshot.debian.org/archive/debian/20160413T160058Z/
→˓pool/main/libp/libpng/libpng12-0_1.2.54-6_amd64.deb && sudo dpkg -i /tmp/libpng12.
→˓deb && rm /tmp/libpng12.deb

For CentOS/RedHat/Fedora distros, try the following:

sudo yum install libpng12

2.2.3 Additional Recommendations

1. Vivado Design Suite 2018.3 or later (Not essential to run RapidWright, but makes it useful)

2. An IDE such as IntelliJ or Eclipse

RapidWright includes the Gradle Wrapper (automatic build tool), so a Gradle installation is not necessary.

2.2.4 Install Steps

The easiest way to get RapidWright setup is to simply run these commands:

Linux (/bin/sh or compatible):

git clone https://github.com/Xilinx/RapidWright.git
cd RapidWright
./gradlew compileJava
export PATH=`pwd`/bin:$PATH

Note: C-style shells (csh or tcsh) should replace the last line with setenv PATH `pwd`/bin:$PATH

Windows (cmd.exe):

git clone https://github.com/Xilinx/RapidWright.git
cd RapidWright
.\gradlew compileJava
set "PATH=%CD%\bin;%PATH%"

Note: For Windows Powershell users, replace the last line with $env:PATH="$pwd\bin;$env:PATH"

2.2. Install 7

https://adoptium.net/
https://git-scm.com/downloads
https://www.xilinx.com/products/design-tools/vivado.html
https://www.jetbrains.com/idea/
https://www.eclipse.org/downloads/packages/
https://docs.gradle.org/current/userguide/gradle_wrapper.html

RapidWright Documentation, Release 2025.1.0-beta

This will clone a copy of RapidWright from GitHub, download jar dependencies, compile the Java code and add the
rapidwright wrapper to your PATH. Checking out and compiling the code can also be accomplished by using an
IDE (see RapidWright Eclipse Setup or RapidWright IntelliJ Setup).

To perform a quick test to ensure RapidWright is setup correctly, try running the following:

rapidwright DeviceBrowser

Note: If you prefer to run with java directly (you’ll need to set the CLASSPATH appropriately, see CLASSPATH
below for details), the same tool can be invoked with: java com.xilinx.rapidwright.device.browser.
DeviceBrowser

You should see the GUI come up similar to this screenshot:

If you have gotten to this point, congrats! Your RapidWright install is correctly configured and you are ready to start
experimenting.

2.2.5 RapidWright Wrapper

Some may be new to Java so RapidWright has included a rapidwright wrapper script (rapidwright.bat for
Windows users) that manages setting the Java class path and provides a handy interface to the various use modes. The
directions above add the wrapper to the PATH.

The rapidwright wrapper has the following options (printed when run without parameters):

8 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

rapidwright com.xilinx.rapidwright.<ClassName> -- to execute main() method of Java
→˓class
rapidwright <application> -- to execute a specific application
rapidwright --list-apps -- to list all available applications
rapidwright jython -- to enter interactive Jython shell
rapidwright jython -c "..." -- to execute specific Jython command

To pass options to java, it is recommended to use the _JAVA_OPTIONS environment variable, for example:

_JAVA_OPTIONS=-Xmx32736m rapidwright RWRoute

This will set the Java Virtual Machine (JVM) upper heap memory limit to ~32GBs. This limit is useful as it is the
largest heap size available by default without causing all references to expand from 4 bytes to 8 bytes.

2.2.6 Vivado Compatibility & Versioning

RapidWright aims to be as compatible as possible with Vivado in terms of the device models it offers and its ability to
load design checkpoints (DCPs) as far back as 2018.2.

RapidWright versioning intends to indicate to the user what the latest version of Vivado for which it will be compatible.
For example, RapidWright 2023.1.0 will be compatible with Vivado 2023.1 and previous versions back to 2018.2.
Conversely, a DCP created in Vivado 2023.1 will likely not be readable in previous versions of RapidWright (2022.2.0,
2022.1.0, etc). This also is true for device models. If a device is released in Vivado 2023.1, it won’t be available in
previous versions of RapidWright.

2.2.7 Notes for Advanced/Legacy Users:

Using Java distributed with Vivado

The easiest way to find out where the Java runtime is packaged with your installation of Vivado, is to run the following
at the Vivado Tcl prompt:

which java

Based on where your installed Vivado is located, it should produce a full path, something like this:

/opt/Vivado/2022.2/tps/lnx64/jre11.0.11_9/bin/java

To use this version of Java instead of the system Java or installing it, simply update your PATH and JAVA_HOME
environment variables:

export PATH=/opt/Vivado/2022.2/tps/lnx64/jre11.0.11_9/bin:$PATH
export JAVA_HOME=/opt/Vivado/2022.2/tps/lnx64/jre11.0.11_9

Or, if using Windows, search for “edit environment variables” and add a new entry for PATH and JAVA_HOME
appropriately.

CLASSPATH

Java has the notion of a CLASSPATH, this is a list of locations where java can look for compiled Java code (.
class files or .jar files) to execute at runtime. The CLASSPATH can be set on the command line (java -cp
<CLASSPATH_HERE>) or it can be set via the environment variable CLASSPATH. If a script to set the CLASSPATH
variable (in Linux) is desired, the following command can be run:

2.2. Install 9

RapidWright Documentation, Release 2025.1.0-beta

echo "export CLASSPATH=`pwd`/bin:`pwd`/jars/*" > bin/rapidwright_classpath.sh

This sets up the environment so the -cp bin:jars/* classpath option doesn’t need to be set as an argument when
invoking java, for example:

source bin/rapidwright_classpath.sh
java com.xilinx.rapidwright.device.browser.DeviceBrowser

Should start the DeviceBrowser just as before.

RAPIDWRIGHT_PATH

The environment variable RAPIDWRIGHT_PATH is no longer required. RapidWright data files have a default location
(see RapidWright Data Files). To override the default location, the environment variable RAPIDWRIGHT_PATH can
be set and the data files will be placed in $RAPIDWRIGHT_PATH/data.

2.2.8 RapidWright Installer (Obsolete)

The RapidWright installer is no longer the preferred method of installation. Please use the steps above, it is included
below for legacy purposes.

1. Download rapidwright-installer.jar (or run command below in Linux) to the directory where you
would like RapidWright to reside.

wget http://www.rapidwright.io/docs/_downloads/rapidwright-installer.jar

2. From a terminal in that directory, run (To open a terminal on Windows, search and run ‘cmd.exe’ from the Start
orb):

java -jar rapidwright-installer.jar

3. Use one of the BASH/CSH/BAT scripts created at the end of the install to set the proper environment variables
for subsequent invocations of RapidWright.

4. Setup your IDE (if applicable):

• RapidWright Eclipse Setup

• RapidWright IntelliJ Setup

Once complete, you can run the DeviceBrowser within your respective IDE to test the installation.

2.3 RapidWright Eclipse Setup

2.3.1 Eclipse Step-by-Step Instructions

1. Make sure you have Java JDK 1.8 (or later) installed: http://www.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html Follow the instructions when running the downloaded executable.
Add the $(YOUR_JDK_INSTALL_LOCATION)/jdk1.x.x_x/bin folder to your PATH environment
variable.

2. Download Eclipse: http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygen2

3. Install Eclipse by extracting the archive into a desired folder on your computer

10 Chapter 2. Getting Started

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygen2

RapidWright Documentation, Release 2025.1.0-beta

4. Run Eclipse (you may want to add the executable to your path)

5. In Eclipse, choose the File->Import. . . menu option. This will bring up a dialog, choose the Git/Projects from
Git option as shown in the screenshot below (click Next):

6. Choose Clone URI and click Next:

2.3. RapidWright Eclipse Setup 11

RapidWright Documentation, Release 2025.1.0-beta

7. Copy and paste https://github.com/Xilinx/RapidWright.git into the URI box as shown below.
The Host and Repository path fields should automatically be populated. Enter user and password (if applicable).

12 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

8. Choose the master branch, click next:

2.3. RapidWright Eclipse Setup 13

RapidWright Documentation, Release 2025.1.0-beta

9. Choose the location of where you want Eclipse to put your RapidWright workspace. Preferably, you
should choose a workspace directory with any other Eclipse projects such as /home/user/workspace/
RapidWright. Click next to have Eclipse clone the repo into your workspace.

14 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

2.3.2 Setup Eclipse with Existing Repo

If you already have the RapidWright repository checked out, you can import it into an Eclipse workspace by following
these steps (you can skip to Step 5 if you already have Eclipse installed and open)

1. Make sure you have Java JDK 1.8 (or later) installed: http://www.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html Follow the instructions when running the downloaded executable.
Add the $(YOUR_JDK_INSTALL_LOCATION)/jdk1.x.x_x/bin folder to your PATH environment
variable.

2. Download Eclipse: http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygen2

3. Install Eclipse by extracting the archive into a desired folder on your computer

4. Run Eclipse (you may want to add the executable to your path)

5. In Eclipse, choose the File->Import. . . menu option. This will bring up a dialog, choose the Git/Projects from
Git option as shown in the screenshot below (click Next):

2.3. RapidWright Eclipse Setup 15

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygen2

RapidWright Documentation, Release 2025.1.0-beta

6. Choose ‘Existing local repository’, then click Next

16 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

7. Select the existing repository by clicking the ‘Add. . . ’ button

2.3. RapidWright Eclipse Setup 17

RapidWright Documentation, Release 2025.1.0-beta

8. Enter the location of the repository in the ‘Directory:’ text box, check the box next to the name of the repo once
it appears in the lower window. Click ‘Finish’ and then ‘Next’ on the previous window.

18 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

9. On the Wizard selection window, choose ‘Import existing projects’. Then, click ‘Next’.

2.3. RapidWright Eclipse Setup 19

RapidWright Documentation, Release 2025.1.0-beta

10. Finally, click ‘Finish’ to finalize the import.

20 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

11. Eclipse will then import the project, compile all the source and it should look similar to the screenshot below:

2.3. RapidWright Eclipse Setup 21

RapidWright Documentation, Release 2025.1.0-beta

2.4 RapidWright IntelliJ Setup

2.4.1 Step-by-Step Instructions

1. Make sure you have Java JDK 1.8 (or later) installed: http://www.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html Follow the instructions when running the downloaded executable.
Add the $(YOUR_JDK_INSTALL_LOCATION)/jdk1.x.x_x/bin folder to your PATH environment
variable.

2. Download IntelliJ: https://www.jetbrains.com/idea/download/

3. Install IntelliJ by running the setup executable.

4. Start IntelliJ, and naviagate through setting selection (if necessary) to the welcome screen.

5. Choose Open from the Welcome screen and navigate to the RapidWright directory where RapidWright has
been installed, then click OK.

22 Chapter 2. Getting Started

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.jetbrains.com/idea/download/

RapidWright Documentation, Release 2025.1.0-beta

6. The RapidWright project should open and IntelliJ may indicate that it is indexing the project. Click on the
1:Project button at the top left sidebar, this will expand the project tree:

2.4. RapidWright IntelliJ Setup 23

RapidWright Documentation, Release 2025.1.0-beta

7. Expand the source tree to navigate to the DeviceBrowser class, RapidWright/src/com.xilinx.

24 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

rapidwright/device/browser/DeviceBrowser as shown in the screenshot above.

8. (If running Linux, skip this step). In Windows, we need to set the GUI library jar to choose the win64 version
instead of the lin64 (the default). In order to do this, Choose File->Project Structure..., then select
Libraries under Project Settings at the top left. this should produce a list of jar file names in the
right window pane. Use the - and + buttons to remove the qtjambi-lin64*.jar and replace it with the
qtjambi-win64*.jar respectively:

9. You should now be able to run any of the programs in RapidWright in the IntelliJ environment. For example,
right-click on DeviceBrowser and choose Run DeviceBrowser.main() from the menu. If successful,
the DeviceBrowser will run similar to the screenshot below:

2.4. RapidWright IntelliJ Setup 25

RapidWright Documentation, Release 2025.1.0-beta

10. The IntelliJ environment should be correctly configured at this point. If you have problems, try setting the
RAPIDWRIGHT_PATH environment variable to point to your RapidWright install directory prior to running
IntelliJ.

2.5 RapidWright Jupyter Notebook Kernel Setup

A Jupyter Notebook is an open source web application that allows you to create and share live documents that can
embed and run code. As RapidWright has a built-in Python interpreter (Jython – a Python interpreter implemented in
Java), RapidWright can harness the Jupyter Notebook paradigm for tutorial, demonstration and design analysis. This
page describes how to setup a Jython kernel for use on a local machine to enable RapidWright-capable notebooks.

2.5.1 Pre-requisites

1. RapidWright 2023.1 or above

2. Python and Jupyter Notebook, see installation details here.

3. A web browser

2.5.2 Step-by-Step Instructions

1. Make sure Python and Jupyter Notebook is installed following the directions provided by project Jupyter.

2. If running RapidWright from the standalone jar, run:

26 Chapter 2. Getting Started

https://jupyter.org/index.html
http://www.jython.org
https://www.python.org
https://jupyter.org/index.html
https://jupyter.org/install.html
https://jupyter.org/index.html

RapidWright Documentation, Release 2025.1.0-beta

java -jar rapidwright-2018.3.0-standalone-lin64.jar --create_jupyter_kernel

for all other installs run:

rapidwright StandaloneEntrypoint --create_jupyter_kernel

3. Install the Jython 2.7 kernel by running the following at the command line:

jupyter kernelspec install <path_to_kernel_file_dir>

Two other useful commands if you make a mistake and need to undo is:

To list all the installed kernels, run:

jupyter kernelspec list

To remove an installed kernel by name (obtained from list command), run:

jupyter kernelspec uninstall <kernel_name>

4. Run the jupyter notebook server by running:

jupyter notebook

The console output should look similar to the image below.

If the Jupyter Notebook directory page does not open automatically (example in screen capture below), copy and paste
the provided URL into your browser (example URL highlighted in the image above).

2.5. RapidWright Jupyter Notebook Kernel Setup 27

RapidWright Documentation, Release 2025.1.0-beta

5. Create a new notebook by clicking on the new button and selecting ‘Jython 2.7’ from the drop down menu as
shown in the screenshot below:

6. In the new notebook, you’ll see a long rectangular box where you can enter code. This is called a cell.

28 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

7. To get started, try entering some import commands as shown in the screenshot below. You can then click on the
“Run” button to run the code from the cell in the kernel.

from com.xilinx.rapidwright.device import Device
from com.xilinx.rapidwright.design import Design

8. The results from executed commands persist from one cell to the next as long as the Jython kernel stays alive
and will maintain all state variables. The “Run” button also creates a new cell below the last one executed. Now
that we have imported some RapidWright libraries, we can use tab completion to see inside objects their visible
methods and members.

2.5. RapidWright Jupyter Notebook Kernel Setup 29

RapidWright Documentation, Release 2025.1.0-beta

10. For a quick example, we can create an empty design and write out a design checkpoint. Another way to execute
a cell is with the keyboard shortcut CTRL+ENTER.

design = Design("HelloWorld",Device.AWS_F1)
design.writeCheckpoint(design.getName() + ".dcp")

11. By going back to the Jupyter Dashboard (click on the Jupyter logo at the top left of the page), we can find the
recently created DCP and select it for download.

30 Chapter 2. Getting Started

RapidWright Documentation, Release 2025.1.0-beta

Using Jupyter Notebooks is still a new technology, but will allow for easy demonstration of coding examples and
techniques to use RapidWright. We hope to leverage its infrastructure significantly in the coming future.

2.5. RapidWright Jupyter Notebook Kernel Setup 31

RapidWright Documentation, Release 2025.1.0-beta

32 Chapter 2. Getting Started

CHAPTER

THREE

FPGA ARCHITECTURE BASICS

Table of Contents

• FPGA Architecture Basics

– What is an FPGA?

– CPU vs. FPGA

– Lookup Tables (LUTs)

– State Elements

– Carry Chains

– DSP Blocks

– Block RAMs

This section is meant as a brief introduction to FPGA architecture and technology. Most people familiar with FPGAs
can easily skip this section.

3.1 What is an FPGA?

An field programmable gate array (FPGA) is a special kind of chip (integrated circuit, silicon device, microchip,
computer chip, or whatever designation is most familiar) that can be programmed to behave essentially like any other
chip. One might think that a microprocessor or CPU falls into such a description as it is programmable through
software compilation. However, an FPGA and CPU differ significantly in architecture and programming model.

3.2 CPU vs. FPGA

A central processing unit (CPU or just processor) follows the Von Neumann compute-based architecture as illustrated
in the figure below.

A control unit driven by instructions fetched from memory drives the flow of input data through the processor’s
registers and logic producing outputs. The data paths, instruction set, register counts and memory interface are all
fixed at the time of fabrication of the CPU. That is, they are unchanging attributes of the processor and cannot be
customized later.

In stark contrast to the CPU architecture, an FPGA has highly configurable logic and data paths. This is enabled by
a bit-wise, fine-grained architectural model to realize computation. In order to better understand how FPGAs work,
it is beneficial to comprehend their atomic units of computation. Although modern FPGAs have a wide variety of

33

RapidWright Documentation, Release 2025.1.0-beta

Fig. 1: Basic Von Neumann Processing Model for CPUs (Source: Labtron, Creative Commons).

components, at their heart is a large array of replicated programmable look-up tables (LUTs), flip-flops (or registers)
and programmable wires called interconnect as seen in the figures below.

3.3 Lookup Tables (LUTs)

At the heart of configurable logic in FPGAs, lies a basic atomic unit of computation, a lookup table or LUT. A LUT
has a single bit output that is calculated based on the input signal values and the configurable table (or memory) entries
as shown in the figure below.

Although mainstream FPGAs typically use 6-input LUTs, this example illustrates a 3-input LUT for simplicity but the
principle of operation is the same.

LUTs are typically constructed using an N:1 multiplexer (shown in green in Figure 4b) and an Nx1-bit memory (shown
in blue). The example in the figure above is a LUT where N=8. The number of inputs of a LUT is calculated as the
log base 2 of N.

The memory entries in blue boxes in part (b) of the figure above represent the configurable table entries under the ‘out’
column in part (a). The vector of programming bits {a, b, . . . h} ultimately decide how the LUT will behave given
different values presented on the inputs {i0, i1, i2}. For example, to program the LUT to evaluate “i0 XOR i1” on
the inputs, the programming vector {a=0,b=1,c=1,d=0,e=0,f=1,g=1,h=0} would be used. A LUT can implement any
Boolean logic equation limited only by the number of inputs of the LUT’s size. This characteristic is illustrated in the
figure below. LUTs are commonly chained or combined in series to implement larger Boolean equations.

In some devices, some of the LUTs have additional functionality then enable them to act as small RAMs. These RAMs
can be chained together to build larger RAMs as well.

34 Chapter 3. FPGA Architecture Basics

https://commons.wikimedia.org/wiki/File:ABasicComputer.gif

RapidWright Documentation, Release 2025.1.0-beta

Fig. 2: Hypothetical FPGA logic array of LUTs, flip flops and programmable wires (interconnect)

Fig. 3: Close up view of replicated tiles of the logic array and interconnect

3.3. Lookup Tables (LUTs) 35

RapidWright Documentation, Release 2025.1.0-beta

Fig. 4: (a) Truth table relationship of a LUT (b) Diagram of logical behaviour of a LUT

Fig. 5: Examples of several (but not all) logic functions a LUT can potentially implement

36 Chapter 3. FPGA Architecture Basics

RapidWright Documentation, Release 2025.1.0-beta

3.4 State Elements

Once a value is computed from a LUT, it often is desirable to store it. For this purpose, most FPGAs pair their LUTs
with a D-flip-flop or equivalent state element. Often the storage element has configurable reset/clear and clock enable
signals with an option of making it behave as a latch. These state elements have dedicated clocking paths to help
minimize clock skew.

By chaining together LUTs and storing results in flip flops, FPGAs can implement any number of functions and
computation limited only by the number of resources of the device and its delay.

Xilinx offers a variant of LUTs that enable them to also store data in the lookup portion of the table such that they can
perform as small memories, shifters or FIFOs. More information on this can be found in Series 7 CLB User’s Guide
or UltraScale CLB User’s Guide.

3.5 Carry Chains

Carry chain blocks are primitive elements that are provided with a group of LUTs to enable more efficient pro-
grammable arithmetic. Primarily it provides dedicated paths for the carry logic of simple arithmetic operations (add,
subtract, comparisons, equals, etc). Implementing these arithmetic operations in LUTs would result in an inefficient
use of resources and performance would suffer.

For more detailed information of Xilinx carry chains, please see Series 7 CLB User’s Guide or UltraScale CLB User’s
Guide.

3.6 DSP Blocks

Multiplication on FPGAs can be quite expensive when implemented in LUTs and is a common operation. Therefore,
dedicated hard blocks to provide integer multiplication have been present in FPGAs for several years. As applications
have evolved, multiplier blocks have evolved to support a variety of DSP-friendly operations such as MAC (multiply,
accumulate), wide AND/XOR and several others.

For more detailed information of Xilinx DSP blocks, please see Series 7 DSP User’s Guide or UltraScale DSP User’s
Guide.

3.7 Block RAMs

Larger memories (than those made available as small LUTs) are also a significant resource on FPGAs that generally
provide several kilobits of memory storage (Xilinx typically makes 18k or 36k available). These memories are pro-
vided in the fabric and are highly configurable and compose-able such that larger memories with several features can
be made a available.

For more detailed information of Xilinx Block RAMs, please see Series 7 Memory User’s Guide or UltraScale Memory
User’s Guide

3.4. State Elements 37

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf

RapidWright Documentation, Release 2025.1.0-beta

38 Chapter 3. FPGA Architecture Basics

CHAPTER

FOUR

XILINX ARCHITECTURE TERMINOLOGY

Table of Contents

• Xilinx Architecture Terminology

– BEL (Basic Element of Logic)

– Site

– Tile

– FSR (Fabric Sub Region or Clock Region)

– SLR (Super Logic Region)

– Device

In order to use RapidWright, an understanding of Xilinx FPGA architecture and hierarchy will be necessary in navi-
gating your way around the device APIs. In Xilinx FPGAs, there are six major levels of hierarchy that describe basic
components all the way up to the entire device. This hierarchy can be seen in the figure below:

We begin our discussion with a bottom-up approach starting with the lowest level of hierarchy, the basic element of
logic.

4.1 BEL (Basic Element of Logic)

At the lowest level, the atomic unit of Xilinx FPGAs is a BEL. BELs are the smallest, indivisible, representable
component in the fabric of an FPGA. There are two kinds of BELs, Logic BELs (Basic Element of Logic) and
Routing BELs. A Logic BEL is a configurable logic-based site that can support the implementation of a design cell.
Each BEL can support one or more types of UNISIM cells (UNISIM cells are described in Libraries Guides UG953
for Series 7 devices and UG974 for UltraScale™ devices). The mapping between a leaf cell (non-leaf cells do not
represent implementable hardware, just hierarchy) in the netlist and a BEL site is referred to as the ‘placement’ of the
cell. Thus, when one runs the Vivado command place_design, it is essentially mapping all leaf cells in the netlist
to compatible and legal BEL sites.

Routing BELs are programmable routing muxes used to route signals between BELs. Routing BELs do not support
any design elements (logic cells from the netlist do not occupy routing BEL sites), they are used only for routing.
However, some routing BELs do have optional inversions.

BELs have input and output pins. BELs also have configurable connections that connect an input pin to an output
pin. These BEL-based configurable connections are called site PIPs (where PIP stands for Programmable Interconnect
Point). Both logic BELs and routing BELs can have site PIPs. However, in the case of a logic BEL, the site must be
unoccupied by a cell in order for the route through to be usable. Often, these site PIPs, when implemented in logic

39

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug974-vivado-ultrascale-libraries.pdf

RapidWright Documentation, Release 2025.1.0-beta

Fig. 1: Levels of architectural hierarchy in Xilinx FPGAs.

40 Chapter 4. Xilinx Architecture Terminology

RapidWright Documentation, Release 2025.1.0-beta

Fig. 2: Vivado representation of two routing muxes (routing BELs) and two flip flops (logic BELs).

BELs (a LUT is a common example), are referred to as a “route through” or “route-thru.” When routing a design, in
order to physically route a net it is sometimes necessary to route through unused LUTs or other logic BELs with site
PIPs.

4.2 Site

A group of related elements and their connectivity is referred to as a site. Inside of a site, one can find three major
categories of objects:

1. BELs (Logic BELs and/or Routing BELs)

2. Site Pins (External input and output pins to the site)

3. Site wires (connecting elements to each other and site pins)

Sites are instances of a type and each site has a unique name with an _X#Y# suffix denoting its location in the site
type grid. Each site type will have its own XY coordinate grid, independent of others. The only exception to this is
that SLICEL and SLICEM types share the same grid space. SLICEL and SLICEM are the most common site type and
are the basic configurable logic building blocks that contain LUTs and flip flops that form the backbone of the FPGA
fabric.

4.2.1 Site Type

Sites are heavily replicated across the device and each instance of a site corresponds to a site type of that device’s
architecture family. Additionally, sites found in an FPGA device are sometimes capable of hosting different types,
however, when a tile is queried, a ‘primary’ site type is designated.

4.2. Site 41

RapidWright Documentation, Release 2025.1.0-beta

Fig. 3: An UltraScale+ SLICEL site, where logic BELs are magenta, routing BELs are green, site pins are red and site
wires are yellow.

42 Chapter 4. Xilinx Architecture Terminology

RapidWright Documentation, Release 2025.1.0-beta

4.3 Tile

At an abstract level, Xilinx devices are created by assembling a grid of tiles. Similar to sites, each tile is an instance
of a type and each tile has a unique name with an _X#Y# suffix. Tiles are the building blocks used when constructing
an FPGA device. Tiles are designed to abut one another when laid down to construct an FPGA device.

Not all tiles contain sites and those that do, can have more than one. Unlike sites and BELs, tiles do not have
user visible pins. Instead, tiles contain uniquely-named wires that can connect to site pins or other wires through a
programmable interconnect point (PIP). PIPs are programmable muxes that connect two wires together in the same
tile. Most PIPs are present in switch box tiles (those with the “INT” prefix). Columns of switch box tiles are designed
to connect to all fabric resources such as CLBs, DSPs, and BRAMs. When tiles abut, they are designed such that
certain wires in the adjoining tiles line up and connect as shown in the figure below:

4.3.1 Node

As there are no pins on tiles, the notion of a node is used to describe the connectivity of wires in between tiles. A node
is a collection of electrically connected wires that spans one or more tiles. The figure below shows how four wires that
abut among four tiles form a node:

Nodes and wires exist as first class Tcl objects in Vivado and the example above can be queried as follows:

4.3. Tile 43

RapidWright Documentation, Release 2025.1.0-beta

% get_wires -of [get_node INT_X12Y101/EE2_W_BEG5]
INT_X12Y101/EE2_W_BEG5 INT_X13Y101/EE2_W_END5 CLEL_R_X12Y101/EASTBUSIN_FT0_21 CLE_M_
→˓X13Y101/EASTBUSIN_FT0_21
%

For additional resources regarding Vivado objects, see UG912: Vivado Design Suite Properties Reference Guide.

4.3.2 Tile Type

Each tile belongs to a type or definition. A tile type will contain the inventory list of all wires, PIPs and site types.
Vivado does not directly represent the tile type as an object, but is listed as a property value under each tile.

Xilinx traditionally has leveraged a columnar-based architectural approach to tile layout. That is, with a few excep-
tions, all tiles within a column are of the same type but tiles occupying the same row are typically different types.

4.4 FSR (Fabric Sub Region or Clock Region)

A fabric sub region, also known as a clock region, is a replicated 2D array of tiles in the fabric. In the UltraScale
architecture, all FSRs are 60 CLBs tall, but their width will vary depending on the mix of tile types used in its
construction.

Clock routing and distribution lines are represented as the same granularity as FSRs. In UltraScale architectures, there
are 24 horizontal routing tracks, 24 vertical routing tracks, 24 horizontal distribution tracks and 24 vertical distribution
tracks. These routing and distribution tracks abut to tracks in neighboring FSRs to form the device clock network
resource set. For more information specific to clocking resources, please see UG472: Series 7 Clocking Resources
User Guide or UG572: UltraScale Architecture Clocking Resources User Guide.

4.5 SLR (Super Logic Region)

This level of hierarchy is only present on devices that use the stacked silicon interconnect technology (SSIT) or also
known as 2.5D packaging using a silicon interposer. As multiple dies (or dice) are packaged together, each die becomes
a super logic region or SLR. SLRs contain a 2D array of FSRs and are typically identical as each die is fabricated from
the same mask set.

In order for logic to communicate between SLRs, the UltraScale architecture employ special tiles in the FSRs neigh-
bouring the abutment of two SLRs. A column of CLBs is removed and replaced with special tiles called Laguna tiles
that have dedicated flip flop sites to aid in crossing the SLR divide.

4.6 Device

At the highest level of Xilinx architecture is the device. This is generally a 2D array of FSRs for single die products
or two or more SLRs abutted vertically.

The core object in RapidWright is the Device class for any Xilinx device and is described in the next section.

44 Chapter 4. Xilinx Architecture Terminology

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-clocking.pdf

CHAPTER

FIVE

RAPIDWRIGHT OVERVIEW

Table of Contents

• RapidWright Overview

– Device Package

– EDIF Package (Logical Netlist)

– Design Package (Physical Netlist)

This page aims to help bridge the gap between Xilinx architectural constructs and classes and APIs found within the
RapidWright code base. There are three core packages within RapidWight: device, edif and design.

5.1 Device Package

The device package contains the classes that correspond to constructs in the hardware and/or silicon devices. The
most prominent and important class in this package is aptly named the Device class. The Device class represents
a specific product family member (xcku040, for example) but does not carry package, speed grade or temperature
grade information. These additional unique attributes are captured in the Package class. When a specific device
is combined with its package and grade information, this uniquely identifies a Xilinx part, represented by the Part
class.

Most of the details of managing speed grades, packages, temperature are most commonly dealt with by using a string
to uniquely identify a part is by using a String of the part name. RapidWright automatically interprets all valid and
supported Xilinx devices by part name and can correctly load a device if that information is included or not. For
example, the following lines of code all load the same device, even though the part name is slightly different:

Device device = null;
device = Device.getDevice("xcku040");
device = Device.getDevice("xcku040-fbva676-2");
device = Device.getDevice("xcku040ffva1156");
device = Device.getDevice("xcku040-sfva784-1LV-i");
device = Device.getDevice("xcku040ffva1156-2");

The Device class maintains a singleton map to avoid loading the same device more than once. Devices files are
stored in com.xilinx.rapidwright.util.FileTools.DEVICE_FOLDER_NAME and are provided by the
maintainers of the RapidWright project, typically refreshed with each production release of Vivado (2017.3, 2017.4,
2018.1, . . .). A significant amount of information is stored in the device files and so they are highly compressed to
avoid consuming excessive disk space.

45

RapidWright Documentation, Release 2025.1.0-beta

The Device class makes available all of the architectural resources through various APIs and data objects that follow
the same hierarchical model as shown previously in the Xilinx Architecture Terminology section. For convenience,
here again is the logical hierarchy of Xilinx devices:

Fig. 1: Levels of architectural hierarchy in Xilinx FPGAs.

These levels of hierarchy are available in RapidWright and the table below shows basic getters in both RapidWright
and Vivado.

RapidWright
Class

RapidWright Java API Vivado Ob-
ject

Vivado Tcl API

SLR Device.getSLR(int id) SLR get_slrs -filter SLR_INDEX==$idx
ClockRegion Device.getClockRegion(int row,int

col)
Clock Region get_clock_regions -filter

NAME==$name
Tile Device.getTile(String name) Tile get_tiles -filter NAME==$name
Site Device.getSite(String name) Site get_sites -filter NAME==$name
BEL Site.getBEL(String name) BEL get_bels -of $site -filter

NAME==$name

The Device class is the top level object in RapidWright and has direct accessors to all other levels of hierarchy except
for BELs. All classes in the hierarchy are static and do not change based on a user design. Most of the interaction
between a user’s design and the device occur at the Tile, Site and BEL levels of hierarchy. The BEL class can be
one of three kinds of non-routing objects in a Site: a Logic BEL, a Routing BEL and a Port (port of the Site).
This is designated by its class member enum of type BELClass. Most components within the device architecture
are assigned an integer index. This helps to lower memory usage by not always having to explicitly represent a

46 Chapter 5. RapidWright Overview

RapidWright Documentation, Release 2025.1.0-beta

component of the architecture with a dedicated object. It also helps by providing faster lookups. In some cases, such
as TileTypeEnum and SiteTypeEnum, the index has been explicitly enumerated and an enum is used instead.

In parallel with the logical hierarchy of Xilinx devices, there also exist several constructs for representing routing
resources. At the lowest level are pins on BELs represented by the BELPin class. Pins on Site objects can be
referenced by creating dynamic objects of type SitePin. Inside a Site, wires called ‘site wires’ connect BELPin
objects. Connectivity of a site wire is stored in each BELPin and also in the Site object. Site wires do not have an
explicit object for representation, but their name, index and connectivity are available on Site and BELPin objects.

Remaining faithful to the Vivado representation of inter-site routing resources, RapidWright provides Wire, Node
and PIP (Programmable Interconnect Points) objects. These objects are generated on the fly as needed as there can
be several millions of unique instances of each. The figure below correlates a Vivado device GUI representation with
an example of the different routing resources types available in RapidWright.

Fig. 2: Examples of different routing resources Xilinx FPGAs.

5.2 EDIF Package (Logical Netlist)

In Vivado, all designs post synthesis have a logical netlist that can be exported in the EDIF netlist format. EDIF
(Electronic Design Interchange Format) 2 0 0 is the netlist format used in RapidWright. This is due to its inclu-
sion in Vivado’s design checkpoint file format and that Vivado has facilities to read and write it (read_edif and
write_edif).

RapidWright reads, represents and writes logical netlist information in the EDIF format and the EDIF package is
written to explicitly accommodate this need. It was written with Vivado-generated EDIF in mind and may not support
every corner case of the EDIF 2 0 0 specification.

Parsing EDIF is performed by the EDIFParser class. EDIF is normally handled when reading or writing a DCP, but
it can be parsed/exported independently as follows:

// Read in my_edif_file.edf
EDIFParser parser = new EDIFParser("my_edif_file.edf");
EDIFNetlist netlist = p.parseEDIFNetlist();
// Work some netlist magic...

(continues on next page)

5.2. EDIF Package (Logical Netlist) 47

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

// ...
// Now write it out
netlist.exportEDIF("my_edif_file_post_rapidwright.edf");

The EDIFNetlist is the top level class that contains the netlist and cell libraries. All EDIF-related objects have
EDIF has a class name prefix. The EDIFNetlist keeps a reference to the top cell which is wrapped in the
EDIFDesign class. It also maintains a top cell instance reference that is generated when the file is loaded.

Although a full explanation of netlist modeling and relationships are beyond the scope of this documentation, an
attempt to clarify the contextual meaning of some of the classes will be made. One important distinction to make
is between EDIFPort and EDIFPortInst. At one level, an EDIFPort belongs to an EDIFCell and an
EDIFPortInst belongs to an EDIFCellInst. Another distinction is that an EDIFPort can be a bussed-based
object whereas an EDIFPortInst can only represent a single bit. An EDIFNet defines connectivity inside an
EDIFCell by connecting EDIFPortInst objects together (port references on cell instances inside the cell or to
external port references entering/leaving the cell).

Fig. 3: Snapshot of the Vivado netlist viewer with references to RapidWright EDIF classes

Most classes inherit from EDIFName. EDIF has peculiar naming rules and provides for a mechanism to map the
original name to a legal EDIF name. The EDIF package in RapidWright attempts to hide all of the String gymnastics
necessary to maintain both name spaces and simply present the user with the original intended name.

Several classes also inherit from EDIFPropertyObject (which also inherits from EDIFName).
EDIFPropertyObject endows objects with the ability to store properties which are key/value pairs. Prop-
erties are a mapping between an EDIFName object and a EDIFPropertyObject. These properties can contain
key programmable information such as LUT equations or attributes specific to BEL sites.

48 Chapter 5. RapidWright Overview

RapidWright Documentation, Release 2025.1.0-beta

5.3 Design Package (Physical Netlist)

The design package is the collection objects used to describe how a logical netlist map to the device netlist. The design
is also referred to as the physical netlist or implementation. It contains all of the primitive logical cell mappings to
hardware, specifically the cells to BEL placements and physical net mapping to programmable interconnect or routing.

The Design class in RapidWright is the central hub of information for a design. It keeps track of the logical netlist,
physical netlist, constraints, the device and part references among other things. The Design class is most similar to
a design checkpoint in that it contains all the information necessary to create a DCP file.

Since a design programs a device, there are some one-to-one mappings between the device and design representation
in RapidWright. For example:

Fig. 4: Illustration representing how a Cell, SiteInst and Design map to BEL, Site and Device respectively

5.3.1 SiteInst

Design representation and implementation in Vivado is BEL-centric (BELs and cells). The SiteInst keeps track of
the cells placed onto its BELs, the site PIPs used in routing and how routing resources map to nets.

Each SiteInst maps to a specific compatible site within a device. The SiteInst has a type using a
SiteTypeEnum as the designator. It also maintains a map of named leaf cells from the logical netlist that are
physically placed onto the BEL sites within the site. RapidWright also preserves the same Vivado “fixed” flag that is
used in certain situations by Vivado to prevent components insides the site from being moved.

Routing nets inside of a site (intra-site) is different from routing outside of sites (inter-site). Routing nets outside of
sites consists of finding a path of Node objects from a source site pin to a sink site pin by turning on a set of PIPs. In
contrast, routing inside of a site can be a bit more complext as it must also account for site context and consider which
BELs are occupied. In general, Vivado attempts to automate the intra-site routing task. RapidWright also strives to do
the same (see SiteInst.routeSite()), however it may not always fully automate tasks as expected and the user may be
required to call additional APIs when placing/routing design elements.

One of the ways routing is accomplished inside a site is through a SitePIP, which is a programmable interconnect
point that exists on a routing BEL. Generally, a SitePIP will establish a connection through a routing BEL or, in
some cases, a logic BEL from an element input pin to an element output pin, thus connecting two separate site wires.
The SiteInst is the object in RapidWright where site PIP usage is recorded and maintained. By default all site PIPs
are turned off, if the site PIP is added to the SiteInst then it is interpreted as the site PIP being turned on or used.

5.3. Design Package (Physical Netlist) 49

RapidWright Documentation, Release 2025.1.0-beta

5.3.2 Net

Routing outside of a site is represented by the Net class. A Net in RapidWright is typically named after the logical
driver source pin and represents the entire set of logically equivalent nets that map to the same electrically equivalent
net. For example, consider the net depicted in the following netlist screenshot:

This figure shows the logical netlist connection of three cells over one physical net. However, there are 11 separate
nets in the logical netlist that must be traversed in order to make the connection.

A Net is a physical net that implements a route using PIPs (programmable interconnect points) that, when combined
together connect nodes into a path from a source site pin to one or more sink site pins. A Net starts and stops at site
pins represented by SitePinInst objects (design instances of SitePin objects). The physical implementation of
the 11 logical nets above is shown in the figure below:

The net is also referenced when routing inside a site, but the site routing implementation is captured in the SiteInst
object.

50 Chapter 5. RapidWright Overview

RapidWright Documentation, Release 2025.1.0-beta

5.3.3 Cell (A BEL Instance)

At the lowest level, a RapidWright Cell maps a logical leaf cell from the EDIF netlist (EDIFCellInst) to a BEL.
The cell name is typically the full hierarchical logical name of the leaf cell it maps to and also maintains the library
cell type name (FDRE, for example for a reset flip flop). A cell also maintains the logical cell pin mappings to the
physical cell pin mappings (pins on the BEL).

5.3.4 Module

A module is a physical netlist container construct available in RapidWright. A RapidWright module is represented
by the Module class in the design package. A module contains both a logical and physical netlist that provides
all the details necessary for a full implementation. It is most similar to a placed and routed out-of-context DCP,
however RapidWright enables the implementation to be replicated or relocated to multiple compatible areas of the
fabric—capabilities that are not yet available in Vivado. A module is a definition object in that the SiteInst and
Net objects it contains are a prototype or blueprint for a pre-implemented block that can potentially be ‘stamped’ out
and relocated in valid locations around a device. The ModuleInst represents the instance object of a Module and
is part of the implemented portion of a physical netlist.

5.3.5 Module Instance

A module instance quite simply is an instance of a module. RapidWright supports module instances in a design
using the ModuleInst class in the design package. Module instances have a unique name within the design and
as each module has a collection of SiteInst and Net objects, these containers are prefixed hierarchically with
the module instance name. For example, if a module had a SiteInst named “SLICE_X2Y2” and a Net named
data_ready, a newly created module instance named “fred” would have counterpart SiteInst and Net objects
called “fred/SLICE_X2Y2” and “fred/data_ready”.

A module instance will typically have one of its site instances selected as what is called an ‘anchor’. The anchor site
instance is a common reference point by which all other site instances and nets in the instance can be referenced. This
is useful for determining if a potential location on the fabric is compatible with the module instance for placement.

The Module and ModuleInst concept is not available in Vivado. However, if a design in RapidWright is written
out without being flattened (See Design.flattenDesign()), RapidWright will save module metadata in the
DCP and the modules and instances can be reloaded if the DCP is reloaded in RapidWright. If the DCP is read by
Vivado and then written back out, the module metadata will be lost.

5.3. Design Package (Physical Netlist) 51

RapidWright Documentation, Release 2025.1.0-beta

52 Chapter 5. RapidWright Overview

CHAPTER

SIX

DESIGN CHECKPOINTS

Table of Contents

• Design Checkpoints

– What is a Design Checkpoint?

– What is Inside a Design Checkpoint?

– RapidWright and Design Checkpoint Files

6.1 What is a Design Checkpoint?

A design checkpoint (DCP) is a file used by the Vivado Design Suite that represents a snapshot of a design at any stage
of the design process. The snapshot includes the netlist, constraints and implementation results.

6.2 What is Inside a Design Checkpoint?

A design checkpoint file (extention .dcp) is a Vivado file format that contains a synthesized netlist, design constraints
and can contain placement and routing information. RapidWright provides readers and writers to parse and export the
various components.

6.3 RapidWright and Design Checkpoint Files

RapidWright can freely read and write checkpoint files with the following exceptions:

• If the design is encrypted, RapidWright cannot open it. RapidWright is not capable of decrypting files.

– Sometimes, however, a design may not be secured or designated to be encrypted but the EDIF file in the
DCP is encrypted. This is due to RTL source references being stored in the EDIF file. Vivado will allow
you to write out an EDIF file (without RTL source references) with the write_edif Tcl command.
RapidWright can read in the alternate EDIF file along side the DCP if it has the same root name (.edf
extension instead of .dcp).

• If the design checkpoint file is created with a much newer version of Vivado compared with the RapidWright
release, it may not be able to read the file.

• Conversely, older versions of Vivado may not be able to read RapidWright checkpoint files

53

RapidWright Documentation, Release 2025.1.0-beta

Here are a few ways to read/write a design checkpoint in RapidWright:

Design design = Design.readCheckpoint("my_design_routed.dcp");
// or if the EDIF inside the DCP is encrypted because of source references,
// you can alternatively supply a separate EDIF
design = Design.readCheckpoint("my_design_routed.dcp", "my_design_edif.edf");

// To write out a design
design.writeCheckpoint("my_design_post_rapidwright.dcp");

The interface that enables RapidWright to read and write checkpoints is handled by the RapidWright API Library in the
provided rapidwright-api-library-<ver>.jar. The APIs in this tool are used in the Design class with readCheckpoint()
and writeCheckpoint(). Note that it is licensed separately from the rest of RapidWright under a modified Xilinx
EULA. Also note that RapidWright is not an official product from Xilinx and designs created or derived from it are
not warranted. Please see LICENSE.TXT for full details.

54 Chapter 6. Design Checkpoints

https://github.com/Xilinx/RapidWright/blob/master/LICENSE.TXT

CHAPTER

SEVEN

IMPLEMENTATION BASICS

Table of Contents

• Implementation Basics

– Placement

– Routing

Implementation, in the context of RapidWright and compiling designs for FPGAs, is defined as the placement and
routing of a synthesized/mapped netlist to a specific FPGA device. This section will describe the detailed mechanics
of how placement and routing can be achieved in RapidWright.

7.1 Placement

As opposed to Vivado, RapidWright enables three layers or levels of placement in its design abstraction: BEL level,
site level and module level. Vivado primarily only enables BEL placement (previously in ISE, sites were the major
unit of placement). This section details how RapidWright represents and interacts with design elements at the three
levels of placement mentioned.

7.1.1 BEL Placement

Note: Reliable automatic BEL placement in RapidWright is still a work in progress and care should be taken when
attempting this capability.

Creating correct BEL placements is quite tricky as several factors must be taken into consideration when placing a cell
onto a BEL site. Some questions one might need to ask when placing a cell onto a BEL site are:

1. Is the BEL site already occupied and are all pins map-able to the surrounding BEL connections?

2. Are all of the cell connections routable within the site and interconnect?

3. Are the clock and set/reset domains compatible with those already used within the site or are there resources
available to route alternatives?

4. Does this cell depend on any dedicated inter-site wires (such as carry chains or DSP cascades) that are not
available?

Placing a cell correctly can necessitate updates to the design in the following categories:

55

RapidWright Documentation, Release 2025.1.0-beta

1. Mapping of a Cell object to a BEL in RapidWright

2. Pin mappings between the logical and physical cell pins must be added and/or routed within the site (conditions
will vary).

3. Use of one or more SitePIPs as part of routing the site (stored in the respective SiteInst)

Generic pin mappings are assigned when a cell is created and placed. However, these mappings may need to be
adjusted based on the context.

A SitePIP configures a routing BEL to propagate a signal from one of its inputs to its output pin. SitePIPs must be
turned on in the respective SiteInst when a cell is placed onto a BEL as the common convention in Vivado is to
always leave the site in a legally routed state.

7.1.2 Site Placement

Within RapidWright, it can be straightforward to move a SiteInst from one site to another. An example of how to
relocate a site instance from one location to another is shown below:

Design d = Design.readCheckpoint("example.dcp");
SiteInstance si = d.getSiteInstanceFromSiteName("SLICE_X0Y0");
si.place(d.getDevice().getSite("SLICE_X1Y1"));

The user is responsible for changing any existing routing resources that previously routed to the old site.

7.1.3 Module Placement

One of RapidWright’s unique capabilities is providing another level of hierarchy in implementation. Through the
Module and ModuleInstance classes, a complex cell can be replicated and/or relocated across the device. When
a pre-implemented module is created for a device, all valid locations are pre-calculated and stored for the anchor site
within the Module. Therefore, placement of a ModuleInstance is simply selecting one of the valid anchor sites
and applying it.

7.2 Routing

In Vivado, there is roughly three different types of routing: intra-site, inter-site and clock routing. This section provides
a brief overview of each.

7.2.1 Site (Intra-site) Routing

When a cell is placed onto a BEL, typical Vivado convention is to route the intra-site net portions immediately after.
Routing a site implies mapping the physical net to site wires and site PIPs. In RapidWright, some of this intra-site
routing happens when the cell is placed and there are a few methods that can also help finish intra-site routing in
special cases. SiteInst.routeIntraSiteNet() will attempt to route one BELPin to another for intra-site
nets. SiteInst.routeSite() will attempt to route all the nets that pertain to the site.

7.2.2 Interconnect (Inter-site) Routing

The majority of work in routing a design is in inter-site routing. This is the task of selecting a set of routing resources
the enable a path between a source site pin and one or more sink site pins. The physical routing of a net in RapidWright
is simply described by a list of PIPs. RapidWright comes with a rudimentary router for UltraScale architectures, but

56 Chapter 7. Implementation Basics

RapidWright Documentation, Release 2025.1.0-beta

it is still a work in progress. It doesn’t fully resolve congestion, but provides a working example for more specialized
tasks.

7.2.3 Clock Routing

Clock routing is very architecture specific and is similar to inter-site routing in that it is also implemented by a list of
PIPs. However, there are key steps and constraints that must be satisfied beyond typical inter-site routing.

7.2.4 RWRoute

RWRoute is a full design router that has been developed in the RapidWright framework leveraging its lightweight
timing model. It is capable of routing designs in both wirelength-driven and timing-driven modes, enabling the open
source community to innovate and develop new algorithms. The open source aspect enables creation of domain-
specific algorithms such as bundle routing in customized cost functions for the desired figure of merit. It also supports
a partial routing mode, which is an essential capability for a future library-based customized flow.

Note: RWRoute has some limitations:

1. It currently only supports UltraScale+ devices.

2. The timing model in RapidWright does not estimate hold time and thus RWRoute cannot address hold time
violations.

3. For the most accurate clock routing in timing-driven mode, certain files will be need to be created (see
tcl/rwroute/README for more information).

4. When attempting to route designs in timing-driven mode, for the most accurate timing estimates on hard blocks
(such as DSPs), the design must be pre-analyzed and a set of files must be created to feed into RWRoute (see
tcl/rwroute/README for more information).

By default, RWRoute runs in timing-driven mode, routing a design from scratch. To run an instance of RWRoute the
syntax is:

rapidwright RWRoute /PATH/TO/INPUT/DCP/design.dcp /PATH/TO/OUTPUT/DCP/design_routed.
→˓dcp

In both run instances, with the following options available:

[--nonTimingDriven] for wirelength-driven routing. RWRoute is non-timing-driven with this option, relying
on the Manhattan distance to guide the routing expansion and optimize total wirelength.

[--partialRouting] for partial routing. RWRoute strictly preserves routed nets of a design and works only on
the unrouted nets of the design.

[--softPreserve] for enabling an experimental feature during --partialRouting, allowing RWRoute to
rip up and re-route otherwise routed (and strictly preserved) nets.

[--wirelengthWeight <arg>] to redefine the wirelength weighting factor. The greater alpha is, the less run-
time the router takes, at the expense of longer wirelength. It is within [0, 1]. Runtimes usually converges when alpha
is larger than 0.7. The default value is 0.8.

[--timingWeight <arg>] to redefine the timing-driven weighting factor. The smaller the timing weight is, the
better critical path delay will be, at the expense of longer runtime. It is within [0, 1]. The default value is 0.35.

[--shareExponent <arg>] to redefine the sharing exponent for timing-driven routing. It is used to control
the routing resource sharing when routing connections. When the sharing exponent is 0, the sharing mechanism
is criticality-unaware and encourages resource sharing, even when connections are long and timing-critical. With an

7.2. Routing 57

RapidWright Documentation, Release 2025.1.0-beta

increasing sharing exponent, the resource sharing is discouraged for critical connections, allowing more suitable routes
for them to optimize timing. As a result, the wirelength and routing time are increased. For an effective criticality-
aware sharing mechanism, the sharing exponent should be no less than 1. The default value is 2 for an optimized
trade-off between the critical path delay reduction and the wirelength-runtime product increase.

There are three tutorials that provide information about using RWRoute in different routing modes:

1. RWRoute Wirelength-driven Routing Tutorial

2. RWRoute Timing-driven Routing Tutorial

3. RWRoute Partial Routing Tutorial

For all other configuration options, please refer to src/com/xilinx/rapidwright/rwroute/RWRouteConfig.java.

58 Chapter 7. Implementation Basics

https://github.com/Xilinx/RapidWright/tree/master/src/com/xilinx/rapidwright/rwroute/RWRouteConfig.java

CHAPTER

EIGHT

MERGING DESIGNS

One useful technique in constructing an FPGA implementation is the ‘divide and conquer’ approach. When dividing
a design, often, Vivado can achieve higher density and quality of results when it can focus on smaller parts of a design
rather than the entire implementation at once.

After dividing a design into separate pieces, it can be tricky to re-assemble the components back into a cohesive
implementation. The logical netlist must be consistent as well as the physical netlist. A popular approach is to
separate the design by module hierarchy, implementing each module or cell out of context. However, not all designs
benefit or have the right hierarchy necessary for this approach. To provide a more robust method of assembly, we have
added a design merge capability in RapidWright.

Merging two or more designs in RapidWright can be accomplished with the API:

public static Design MergeDesign.mergeDesigns(Design ... designs);

Which uses Java’s variable argument construct (Varargs) which can accept any Java Collection object
(List<Design>, Set<Design>, Collection<Design>) an array (Design[]) or a simple comma sepa-
rated list (design0, design1, ... , designN). The return value is the resulting merged design which is
the first design passed as an argument (design0 in the comma separated list case). All other designs are destructively
changed to support the merge.

8.1 Customizing Merge Behavior

As there might be different valid ways to merge a design, the merge process employs an AbstractDesignMerger
to allow a user to implement the desired merging behavior. There are five major object types that must be resolved in
a merge and they are captured in the abstract class that inheritors must implement:

public abstract void mergePorts(EDIFPort p0, EDIFPort p1);
public abstract void mergeLogicalNets(EDIFNet n0, EDIFNet n1);
public abstract void mergeCellInsts(EDIFCellInst i0, EDIFCellInst i1);
public abstract void mergeSiteInsts(SiteInst s0, SiteInst s1);
public abstract void mergePhysicalNets(Net n0, Net n1);

The first three (EDIFPort, EDIFNet and EDIFCellInst) are all logical netlist objects. The last two (SiteInst
and Net) are physical netlist objects. In the DefaultDesignMerger, a general merge behavior is implemented.
The order in which the objects are merged is the same as that listed above. Here is a brief description of the default
merge behavior of the 5 object types in DefaultDesignMerger.

8.1.1 Merging EDIFPorts

When merging ports, the two sets of ports on the top cell of both designs is examined. All names that are unique are
merged into the resulting design. If both designs contain a port with the same name, the directionality of the ports is

59

https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html

RapidWright Documentation, Release 2025.1.0-beta

checked. If they are of opposite directionality (one is an input and the other an output), generally both ports will be
removed and their connected nets will be joined. The net attached to the input port will be eliminated and the net on
the output port will assume the sinks of the input port.

If both ports are inputs, the extra copy is removed and its sinks are added to the first design’s port. If both ports
are outputs, the same approach is taken except if the merging is incompatible (two different sources that cannot be
merged), an error will be thrown.

8.1.2 Merging EDIFNets (Logical)

All unique nets are included in the merged design. If each input design has a net with the same name, sinks are moved
from one copy to the merged net. If one net has a top level port source and the other has a real (hard cell pin) source,
the merging will choose the real source to be included in the final merged net and the port will be omitted.

8.1.3 Merging EDIFCellInsts

All unique instances are included in the merged design. When two designs contain instances of the same name, only
one is kept. Each of the pins on both copies of the instance are examined, if one of the ports is unconnected or undriven,
it will use the connection from the other source design. If both copies of a pin are driven by a source or connection
that cannot be merged, an error is thrown.

To illustrate an example of some of these merging concepts, consider the following two designs, Design A and
Design B:

Fig. 1: Input Design A

If Design A and Design B were merged using the RapidWright API, the resulting design would be:

8.1.4 Merging SiteInsts

Generally, if a merging of two or more designs are attempted, their implementation should not overlap unless curated
in a predictable manner. Merging more than one SiteInst from two different sources both placed onto the same site
can be complicated and error prone. The merge API will attempt to merge placed cells and site routing even if they
occupy the same site.

8.1.5 Merging Nets (Physical)

All unique physical nets are merged in the final result. If more than one copy of a physical net exists in the design
inputs, the routing is combined simply by taking the union of the PIPs belonging to each copy. GND and VCC are

60 Chapter 8. Merging Designs

RapidWright Documentation, Release 2025.1.0-beta

Fig. 2: Input Design B

Fig. 3: Result of Merging Design A and Design B

8.1. Customizing Merge Behavior 61

RapidWright Documentation, Release 2025.1.0-beta

common cases where the physical net is merged.

62 Chapter 8. Merging Designs

CHAPTER

NINE

BITSTREAM MANIPULATION

Table of Contents

• Bitstream Manipulation

– Disclaimer

– Overview

– Bitstream Packet Model

– Configuration Array Model

– Example Usages: Modify User State Bits

– Example Usages: Find and Print the Frames of a Placed Cell

This section describes the useful capabilities available in RapidWright when working on placed and routed designs
and bitstreams created by Vivado.

9.1 Disclaimer

RapidWright cannot generate bitstreams on its own. It is necessary to create bitstreams using Vivado. RapidWright
does not contain the information needed to translate a placed and routed design into a bitstream. RapidWright also has
no encryption/decryption capabilities and will not be able to parse any bitstreams successfully that are encrypted. As
with any files generated by RapidWright, they are not warranted and it is intended as an experimental platform only.

9.2 Overview

RapidWright has some new, useful, documented bitstream capabilities that can be provided for existing placed and
routed circuits when a Vivado-generated bitstream is readily available. This section will describe at least three capa-
bilities:

1. Update existing user-defined initialization state such as flip-flop, LUTRAM and BRAM initialization values.

2. Coarse-grained correlation of placed and routed circuits to approximate locations in the bitstream for reliability
analysis and related analysis.

3. For highly constrainted and well-planned sockets, it presents the opportunity to relocate partial bitstreams into
different DFX regions (documentation coming soon).

63

RapidWright Documentation, Release 2025.1.0-beta

In order to support these capabilities, RapidWright has been augmented with a set of APIs that provide bitstream
parsing and a configuration array model. These two models are heavily influenced and derived from existing Xilinx
Configuration User Guides:

• UltraScale Architecture: UG570

• Series 7 FPGAs: UG470

• Zynq-7000 Soc Technical Reference Manual: UG585

Users are highly encouraged to review these guides to gain a better understanding of the mechanics of bitstream
delivery and structure as most of these details will not be duplicated in this description.

There are two ways to represent a bitstream in RapidWright. The first is through a packet stream model represented by
the Bitstream class. The second is a configuration array model (see ConfigArray class) that loosely represents
the memory array of the device as configured by the packets delivered from the bitstream. Each model is briefly
described below.

9.3 Bitstream Packet Model

A .bit file is essentially a sequence of packets that contain instructions to read and write configuration registers (see
configuration user guides above for greater details). RapidWright has several class objects that will parse and rep-
resent the difference components of a bitstream using the Bitstream, BitstreamHeader, Packet, OpCode,
PacketType and RegisterType classes and enums. A key point is that a bitstream contains a list of packets that
read and write registers. One register in particular is the Frame Data Register (FDRI) that writes and read data to the
configuration memory of the device.

9.3.1 BitstreamHeader

The bitstream header appears at the beginning of a .bit file and is a list of 32-bit words that contain some metadata
about the bitstream (creation date/time, target part name, design name, etc). It also contains some dummy pad words
and bus width detection packets. The header ends with the sync word (0xAA995566), an example is shown from an
excerpt of a Series 7 below:

9.3.2 Packet and PacketType

Each packet has a header word (32-bits) and often a payload. There are two kinds of packets, most of which are of
type 1. Type 2 packets are used for very large payloads (such as configuration array data). Bit fields are shown below
from the configuration user guide:

9.3.3 RegisterType and Frame Address Register

There are several configuration register types, please refer to your architecture’s respective guide (listed above) for
details. One of the most import registers used is the frame address register (FAR). The FAR describes the address to
which a frame a configuration data is written to in the configuration array.

The configuration array is divided into smaller segments called configuration rows, rows are divided into columns of
blocks and then each unique block is divided into a number of frames. A block is the same height as a clock region in
the fabric.

A frame address has several fields that are architecture specific. See the tables above for the bit fields used. For
example, a Series 7 device distinguishes the top and bottom half of a device as a separate region whereas for UltraScale
and UltraScale+ this is not the case. See figures below for to illustrate:

64 Chapter 9. Bitstream Manipulation

https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

RapidWright Documentation, Release 2025.1.0-beta

9.3. Bitstream Packet Model 65

RapidWright Documentation, Release 2025.1.0-beta

66 Chapter 9. Bitstream Manipulation

RapidWright Documentation, Release 2025.1.0-beta

9.3. Bitstream Packet Model 67

RapidWright Documentation, Release 2025.1.0-beta

When a frame of data is written to the FDRI, the FAR register automatically increment each time a complete frame
of data is written. Thus, no additional packets to set the FAR are necessary, although there are debug CRC bit-
streams that can be generated where the FAR address is set explicitly for each frame (see UG908- Table A-1, BIT-
STREAM.GENERAL.DEBUGBITSTREAM YES).

9.4 Configuration Array Model

The ConfigArray class represents the array as defined by the address space of the FAR and holds all the frame data
written to it by the packet list from the bitstream. The config array is essentially a list of configuration rows, each row
is a list of configuration blocks and each block is a list of configuration frames.

9.5 Example Usages: Modify User State Bits

Note: The API ConfigArray.updateUserStateBits() only updates user state bits as documented in the
logic location file generated from write_bitstream -logic_location_file.

public static void main(String[] args) {
Design design = Design.readCheckpoint(args[0]);
Bitstream bitstream = Bitstream.readBitstream(args[1]);
ConfigArray configArray = bitstream.configureArray();

// Changes the initialization of the FF to 1
Cell cell = design.getCell("myFF");
cell.getProperty("INIT").setValue("1");
configArray.updateUserStateBits(cell);
bitstream.updatePacketsFromConfigArray();

design.writeCheckpoint(args[2]);
bitstream.writeBitstream(args[3]);

}

68 Chapter 9. Bitstream Manipulation

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug908-vivado-programming-debugging.pdf

RapidWright Documentation, Release 2025.1.0-beta

9.6 Example Usages: Find and Print the Frames of a Placed Cell

public static void main(String[] args) {
Design design = Design.readCheckpoint(args[0]);
Bitstream bitstream = Bitstream.readBitstream(args[1]);
ConfigArray configArray = bitstream.configureArray();

// Find Configuration Block of a resource and print frames
Cell cell = design.getCell("myFF");
Block block = configArray.getConfigBlock(cell.getTile());
for(Frame frame : block.getFrames()) {
System.out.println(frame.toString(true));

}
}

9.6. Example Usages: Find and Print the Frames of a Placed Cell 69

RapidWright Documentation, Release 2025.1.0-beta

70 Chapter 9. Bitstream Manipulation

CHAPTER

TEN

FPGA INTERCHANGE FORMAT

10.1 What is the FPGA Interchange Format?

The FPGA Interchange Format (FPGAIF) is a standard exchange format designed to provide all the information
necessary to perform placement and routing in an open source context. It contains three major schemas that define
how to transfer the following kinds of data in an architecture-independent way:

1. FPGA architecture device model: The available placement and programmable routing resources on the FPGA

2. Logical netlist: Cell definitions, networks, pins, hierarchy, etc.

3. Physical netlist: Placement mappings and routing configurations, i.e. mapping the logical netlist to the FPGA
architecture device model

The FPGAIF is hosted as an open source project under the CHIPS Alliance and original development was started in
2020.

10.2 What does the FPGA Interchange Format enable?

Primarily it allows tools–both commercial and open source–an open way to exchange FPGA device and design data
to enable customized place and route solutions. Some tools and efforts that support the FPGAIF:

• DREAMPlaceFPGA – An open source GPU accelerated FPGA placer (FPGAIF Support Page)

• ISFPGA 2024 Runtime-first Routing Contest

• python-fpga-interchange – A Python module for reading and writing FPGA Interchange Files

• RapidWright – Full support for all AMD-Xilinx architectures and design files

10.3 How is RapidWright related to the FPGA Interchange Format?

RapidWright has a full reference implementation of the entire FPGA Interchange schema. It is able to generate nearly
all supported FPGA devices in the format and can read and write Interchange designs. It can convert those designs to
and from design checkpoint files to be exported and imported from Vivado.

10.4 Additional Resources

• AMD-Xilinx announcement of support for the FPGA Interchange Format

• Google Open Source Blog Article on the FPGA Interchange Format

71

https://www.chipsalliance.org/projects/
https://www.chipsalliance.org/
https://github.com/rachelselinar/DREAMPlaceFPGA
https://github.com/rachelselinar/DREAMPlaceFPGA/tree/main/IFsupport
https://xilinx.github.io/fpga24_routing_contest/
https://fpga-interchange-schema.readthedocs.io/
https://github.com/Xilinx/RapidWright/tree/master/interchange
https://www.linkedin.com/pulse/chips-alliance-fpga-interchange-format-ivo-bolsens/?trackingId=or6MV42Xn5ixheYSpNrldA%3D%3D
https://opensource.googleblog.com/2022/02/FPGA%20Interchange%20format%20to%20enable%20interoperable%20FPGA%20tooling.html

RapidWright Documentation, Release 2025.1.0-beta

• ReadTheDocs Documentation for the FPGA Interchange Schema

• FPGA Interchange Schema GitHub Repository

72 Chapter 10. FPGA Interchange Format

https://fpga-interchange-schema.readthedocs.io/
https://github.com/chipsalliance/fpga-interchange-schema

CHAPTER

ELEVEN

RAPIDWRIGHT PUBLICATIONS

11.1 Original RapidWright Publication - FCCM 2018

RapidWright: Enabling Custom Crafted Implementations for FPGAs |
Slides | BibTex

11.2 Additional RapidWright Publications

Confer-
ence

Title

FPL
2024*

DynaRapid: Fast-Tracking from C to Routed Circuits | Slides | Video

TRETS
9/23

RapidStream 2.0: Automated Parallel Implementation of Latency–Insensitive FPGA Designs
Through Partial Reconfiguration

FPGA
2022*

RapidStream: Parallel Physical Implementation of FPGA HLS Designs |
Video

FPT 2021 RWRoute: An Open-source Timing-driven Router for Commercial FPGAs
FPT 2019 An Open-source Lightweight Timing Model for RapidWright | Slides
FPGA
2019

Build Your Own Domain-specific Solutions with RapidWright | Slides

*Best Paper Award Winner

11.3 Community Competitions

Conference Title
FPGA 2024 Runtime-First FPGA Interchange Routing Contest | Conference Site

73

https://cds.cern.ch/record/2903951?ln=en
https://dl.acm.org/doi/10.1145/3593025
https://dl.acm.org/doi/10.1145/3593025
https://dl.acm.org/doi/suppl/10.1145/3490422.3502361/suppl_file/rapidstream-record-1080p.mp4
https://xilinx.github.io/fpga24_routing_contest/
https://www.isfpga.org/past/fpga2024/fpga-routing-contest/

RapidWright Documentation, Release 2025.1.0-beta

11.4 Select Community Publications

Venue Authors Title
TRETS 6/22* Zhang, N., et al. RapidLayout: Fast Hard Block

Placement of FPGA-optimized Sys-
tolic Arrays Using Evolutionary Al-
gorithm

ICCD 2022 Kwadjo, D., et al. Accelerating Hybrid Quantized
Neural Networks on Multi-tenant
Cloud FPGA

J. of PDC**
Kwadjo, D., et al. Towards a Component-based Ac-

celeration of Convolutional Neural
Networks on FPGAs

IPDPSW 2021 Kwadjo, D., et al. Exploring a Layer-based Pre-
implemented Flow for Mapping
CNN on FPGA

ASPLOS 2020 Zha, Y., et al. Virtualizing FPGAs in the Cloud
FPT 2019 Mandebi, J., et al. Automatic Generation of

Application-Specific FPGA Over-
lays with RapidWright

FPL 2019 Hale, R., et al. Preallocating Resources for Dis-
tributed Memory Based FPGA De-
bug

FCCM 2019 Liu, L., et al. RapidRoute: Fast Assembly of
Communication Structures for
FPGA Overlays

FPL 2018 Hale, R., et al. Enabling Low Impact, Rapid Debug
for Highly Utilized FPGA Designs

*Best Paper Award ACM TRETS 2023 **Journal of Parallel and Distributed Computing, May 2022

74 Chapter 11. RapidWright Publications

https://dl.acm.org/doi/10.1145/3501803
https://dl.acm.org/doi/10.1145/3501803
https://dl.acm.org/doi/10.1145/3501803
https://dl.acm.org/doi/10.1145/3501803
https://www.researchgate.net/publication/366433369_Accelerating_Hybrid_Quantized_Neural_Networks_on_Multi-tenant_Cloud_FPGA
https://www.researchgate.net/publication/366433369_Accelerating_Hybrid_Quantized_Neural_Networks_on_Multi-tenant_Cloud_FPGA
https://www.researchgate.net/publication/366433369_Accelerating_Hybrid_Quantized_Neural_Networks_on_Multi-tenant_Cloud_FPGA
https://www.researchgate.net/publication/360432161_Towards_a_Component-based_Acceleration_of_Convolutional_Neural_Networks_on_FPGAs
https://www.researchgate.net/publication/360432161_Towards_a_Component-based_Acceleration_of_Convolutional_Neural_Networks_on_FPGAs
https://www.researchgate.net/publication/360432161_Towards_a_Component-based_Acceleration_of_Convolutional_Neural_Networks_on_FPGAs
https://www.researchgate.net/publication/352492458_Exploring_a_Layer-based_Pre-implemented_Flow_for_Mapping_CNN_on_FPGA
https://www.researchgate.net/publication/352492458_Exploring_a_Layer-based_Pre-implemented_Flow_for_Mapping_CNN_on_FPGA
https://www.researchgate.net/publication/352492458_Exploring_a_Layer-based_Pre-implemented_Flow_for_Mapping_CNN_on_FPGA
https://dl.acm.org/doi/abs/10.1145/3373376.3378491
https://ieeexplore.ieee.org/abstract/document/8977903
https://ieeexplore.ieee.org/abstract/document/8977903
https://ieeexplore.ieee.org/abstract/document/8977903
https://ieeexplore.ieee.org/abstract/document/8892263
https://ieeexplore.ieee.org/abstract/document/8892263
https://ieeexplore.ieee.org/abstract/document/8892263
https://ieeexplore.ieee.org/abstract/document/8735550
https://ieeexplore.ieee.org/abstract/document/8735550
https://ieeexplore.ieee.org/abstract/document/8735550
https://ieeexplore.ieee.org/abstract/document/8533472
https://ieeexplore.ieee.org/abstract/document/8533472

CHAPTER

TWELVE

A PRE-IMPLEMENTED MODULE FLOW

This section describes a pre-implemented module flow that can operate in two ways:

1. Target high performance implementations by reusing high quality, customized solutions.

2. A rapid prototyping demonstration vehicle that hints at a future of fast compile times.

12.1 Background and Flow Comparison

Both flows (high performance and rapid prototyping) start with the RapidWright provided
Tcl command, rapid_compile_ipi. This command can be loaded by running source
${::env(RAPIDWRIGHT_PATH)}/tcl/rapidwright.tcl in the Vivado Tcl interpreter. Optionally,
you can also configure Vivado to source the script each time it starts by modifying the Vivado_init.tcl (see the section
‘Loading and Running Tcl Scripts’ in UG894: Vivado Design Suite User Guide - Using Tcl Scripting).

Note: If you are using a standalone jar, you can extract the rapidwright.tcl (and other device/data) by running java
-jar <standalone.jar> --unpack_data and setting the environment variable RAPIDWRIGHT_PATH to
the standalone jar location.

This command runs on an open IP Integrator design by synthesizing, placing and routing all IP blocks out-of-context
(OOC). Each block is provided a pblock (area constraint before placement to improves its re-usability). The imple-
mented result for each IP is stored in the Vivado IP cache. RapidWright then uses the cache for each subsequent
run (and only pre-implements one of each kind of IP—so if your design has multiple instances, only one run per
type). After all IPs have been implemented OOC, it invokes the BlockStitcher in RapidWright to stitch all of
the pre-implemented blocks together, places the blocks and routes them into a final implementation (note: currently
RapidWright router is disabled). This command, can function in two modes as described previously. Here is a quick
comparison of the high performance vs. rapid prototyping mode for pre-implemented blocks:

High Performance Flow Rapid Prototyping Flow
PBlock Selection Application Architect (Manual) PBlock Generator
Block Placement Application Architect (Manual) Block Placer
Global Routing Vivado RapidWright Router OR Vivado

The high performance flow (as described in more detail in the High Performance Flow section below) requires input
from the application architect of the design. This does involve extra effort, but leads to potentially the highest imple-
mentation results. The Rapid Prototyping Flow is optimized more for fast compile times by automating the tasks of
pblock selection for each block/IP involved and also placement of the blocks.

75

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf

RapidWright Documentation, Release 2025.1.0-beta

12.1.1 Module Cache

In order to better facilitate fast loading performance of modules, RapidWright has a fast and efficient file format for
storing modules in a directory called a cache. The facilities for reading and writing these module storage files are
found in the BlockCreator class found in the ipi package. As each IP to be implemented in a design might
have different physical contexts or placement pblocks, multiple implementations of the same Module are stored in a
ModuleImpls object which is simply an extended ArrayList<Module>. This allows all the implementations
to reside in the same object and file and to reference each unique implementation with an index. Each RapidWright
module entry has three relevant files:

1. Input: A metadata text file generated from Vivado to communicate information about the IP, its ports, clocks,
constraints and approximate delays on inputs and outputs. This file is read into RapidWright during the module
file creation process.

2. Output: To store the physical implementation data of each module implementation, a ‘.dat’ file is created from
BlockCreator.

3. Output: The logical netlist is shared among all implementations and is stored in a compressed EDIF file format
with a ‘.kryo’ extension.

The RapidWright module cache builds on top of the IP cache in Vivado. By default RapidWright puts the cache in the
$HOME/blockCache directory. This can be changed by setting the environment variable IP_CACHE_PATH before
running the flow.

The IP cache generated by Vivado is supplemented by RapidWright by providing placed and routed DCPs and module
files in each hash-named directory for each non-trivial IP. By default, the flow only creates a single implementation
for each IP. Later, we describe how a user can create an implementation guide file (‘.igf’) directing the flow to create
multiple unique implementations of the same module/IP.

12.1.2 Block Stitcher

The block stitcher (found in the class BlockStitcher of the ipi package) is the heart of the pre-implemented
design flow. It manages the flow progress and ensures that all blocks have been cached and retrieved appropriately. It
also reads in the IP Integrator netlist file (EDIF) that describes the block connectivity and stitches together the block
implementations in the physical netlist. It also reads and parses the implementation guide file (if provided) and creates
the block implementations accordingly.

12.2 High Performance Flow

One of the key attributes of RapidWright is the ability to capture optimized placement and routing solutions for a
module and reuse them in multiple contexts or locations on a device. Vivado often provides good results for small
implementation problems (smaller than 10k LUTs within a clock region). However, when those same modules are
combined into a large system, total compile time increases and the probability of timing closure is reduced. This
phenomenon limits achievable performance and timing closure predictability of larger designs.

RapidWright endows users with a new design vocabulary by caching, reusing and relocating pre-implemented blocks.
We believe this to be an enabling concept and offer a three-step high performance design strategy:

1. Restructure the Design: Expose all modular pieces and replication in an IP Integrator design.

2. Packing & Placement Planning: Craft custom pblocks and placement patterns to match architecture layout and
resources.

3. Stitch, Place & Route Implementation: Run the automated flow to create a final implementation.

76 Chapter 12. A Pre-implemented Module Flow

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf

RapidWright Documentation, Release 2025.1.0-beta

Fig. 1: High level visual of the three step process for the high performance module-based design strategy

The first step requires the design architect to restructure the proposed design such that it can take full advantage of
the benefits provided by pre-implemented modules. We define restructuring as a design refactoring that reflects three
favorable design characteristics: (1) modularity, (2) module replication and (3) latency tolerance. Modularity uncovers
design structure so it can be strategically mapped to architectural patterns. When modules are replicated, reuse of those
high quality solutions and architectural patterns can be exploited to increase the benefits. Finally, if the modules within
a design tolerate additional latency, inserting pipeline elements between them improves both timing performance and
relocatability.

After the design architect has successfully restructured and modularized a design, step two is followed. Here, the
design architect creates an implementation guide file that captures how best to map the modules of a design to the
architecture of the target device. Specifically, pblocks are chosen for those pre-implemented modules of interest and
physical locations are chosen for each instance. This step provides the design architect an opportunity to navigate
FPGA fabric discontinuities. These discontinuities include boundaries such as IO columns, processor subsystems,
and most significantly, SLR crossings. Such architectural obstacles cause design disruptions when targeting high
performance. However, by leveraging a pre-implemented methodology provided in RapidWright, custom-created
implementation solutions can be identified and planned out to manage the fabric discontinuities by custom module
placement. Ultimately, this process is iterative and can inform useful RTL/design changes by focusing design structure
to better match architectural resources.

Step three of the design strategy is an automated flow provided with RapidWright (depicted in the diagram above).
We leverage a design input method in Vivado called IP Integrator (IPI). IPI offers an interactive block-based approach
for system design by providing an IP library, IP creation flow and IP caching. RapidWright takes advantage of IPI
by using leaf IP blocks as de-facto pre-implemented blocks and also by leveraging the IP caching mechanism. The
RapidWright pre-implemented flow extends the caching mechanism to go beyond synthesis, by performing OOC
placement and routing on the block within a constrained area. The flow begins by invoking Vivado’s typical IPI
synthesis and creating pre-implemented blocks for each module if not already found in the cache. RapidWright has
an IPI Design Parser (EDIF-based) that creates a black-box netlist where each instance of a module is empty, ready to
receive the pre-implemented module guts. The block stitcher reads the IP cache and populates the IPI design netlist.
After stitching, the blocks are placed either by loading the implementation guide file or invoking a simulated annealing

12.2. High Performance Flow 77

RapidWright Documentation, Release 2025.1.0-beta

Fig. 2: High level view of the pre-implemented flow process and interactions between Vivado and RapidWright

module placer to place the blocks onto the fabric automatically. Once all the blocks are placed, RapidWright creates a
DCP file that is read into Vivado which completes the final routes.

12.2.1 Implementation Guide File

An implementation guide file (extension *.igf) allows the application architect to communicate all of the specific
implementation customization aspects of the packing and placement phase. The file has the following syntax structure
(note the use of . . . which indicates a potential repetition of the previous construct):

PART <part_name>
BLOCK <ip_cache_id> <# of implementations> <# of instances in the design> <# of
→˓clocks used in this block>
IMPL <implementation index> [# of sub implementation entries] <Pblock range>

[SUB_IMPL <sub implementation index> '<Tcl command returning a subset of
→˓cells in the module>' <pblock range>]

...
...
INST <instance name> <implementation index to apply> <lower left corner site to place
→˓implementation on fabric>
...
CLOCK <clock name> <clock period constraint (ns)> <BUFGCE site (to use for skew
→˓estimation)>
...
END_BLOCK
...
END_BLOCKS

A parser and export for the IGF format can be found in com.xilinx.rapidwright.design.blocks.
ImplGuide.readImplGuide(String fileName) and com.xilinx.rapidwright.design.
blocks.ImplGuide.writeImplGuide(String fileName).

78 Chapter 12. A Pre-implemented Module Flow

RapidWright Documentation, Release 2025.1.0-beta

BLOCK (IP Cache Entry)

The block construct describes all of the potential implementations for a particular block/IP. For each uniquely config-
ured IP (entry in the IP cache), there exists a block. Multiple instances of the same block/IP can exist and this construct
allows the application architect to map instances by name to a specific implementation.

IMPL (Implementation)

Each block has one or more IMPLs. Each implementation carries a pblock and potentially some SUB_IMPL which
allows for sub pblocks to be applied to portions of the logic inside the block. Each IMPL is indexed so that it can
be referenced and applied to specific instances of the block. The application architect takes special care in selecting
implementations and their pblocks to maximize there potential performance, architectural footprint and placement
packing efficiency.

SUB_IMPL (Sub Implementation)

This is an optional construct that allows for more fine-grained pblocks being applied to a partial subset of the block/IP
in an implementation. One field requires a Tcl command that returns a subset of cells that should be included in the
sub implementation and associated pblock. Multiple sub implementation entries can exist for each implementation.
As an example, if a particular IP is tall and narrow and there are specfic cells that need to be placed at the top and/or
bottom, the SUB_IMPL contruct can be used to pblock the top and bottom specific cells in sub pblock of the overall
implementation.

INST (Instance)

In each design, there will be one or more instances of a block/IP. Each instance has a unique name and must be
assigned to an implementation. Each instance also requires a placement which is provided by denoting a specific site
onto which the lower left corner of the pblock of the respective implementation could be placed.

CLOCK (Clock Input)

The clock construct describes a clock input to the block or IP and allows it to apply a clock period constraint in
nanoseconds. It also requires the BUFGCE site from which the clock will be driven so that during placement and
routing, the clock skew can be estimated.

Basic Example

The diagram below illustrates a basic BLOCK example with many of the different fields highlighted.

12.3 Rapid Prototyping Flow

When an implementation guide file is not provided when calling the rapid_compile_ipi command, the flow
defaults into a rapid prototyping flow that targets faster compilation. As no user input is provided to guide pblock
selection or block placement, RapidWright provides automated facilities that accomplish these tasks automatically,
albeit with lower average performance than the application architect.

12.3. Rapid Prototyping Flow 79

RapidWright Documentation, Release 2025.1.0-beta

Fig. 3: BLOCK example with multiple implementations, instances and clocks

12.3.1 Automatic PBlock Generator

The automatic pblock generator is found in the design.blocks package in the class called PBlockGenerator.
It takes as input two files to calculate an appropriate pblock for a given circuit. First it uses a utilization report
file (produced by Vivado’s report_utilization command) to identify the types of resources needed and their
quantity. Second, it reads a shapes report file that describes all of the shapes in the design to ensure that the pblock
size can easily accommodate all shapes. Shapes are an internal Vivado construct to help small groups of cells be
placed together (such as carry chains). In the pre-implemented flow, the PBlockGenerator is always invoked for
each IP that is created, specific Tcl commands are found in the tclScripts/rapidwright.tcl file in the
compile_block_dcp proc.

One of the techniques used by the PBlockGenerator is to identify the most common tile column patterns (see
TileColumnPattern class in the device.helper package) found in a particular device and place the pblock
onto the most common match for a given resource footprint to maximize the place-ability of the block.

Expectations for performance should be muted as the prioritization for the pblock generator is to produce a pblock
that won’t cause place and route to fail and lacks knowledge of the particular context of the design where the block
may be destined. For this purpose, it is highly recommended that any performance critical block or design use the
implementation guide file as a way to better optimize the pblock for a particular application.

Additional research and development work has been made by providing an improved horizontal block density algo-
rithm described in Improved Horizontal Block Density.

12.3.2 Block Placer

The Block Placer (found in the class BlockPlacer2 of the package placer.blockplacer), uses a simple
simulated annealing schedule to place the blocks on to the fabric. The cost function is a function of total wire length
between blocks. Again, like the pblock generator, the block placer attempts to produce valid results, with less emphasis
on performance.

80 Chapter 12. A Pre-implemented Module Flow

RapidWright Documentation, Release 2025.1.0-beta

12.3.3 Router

The router is a very simple maze router with very limited routing congestion avoidance. Its clock router is still a work
in progress and is currently disabled. It is currently tuned to work with UltraScale and UltraScale+ architectures. The
Router class is found in the router package.

12.3. Rapid Prototyping Flow 81

RapidWright Documentation, Release 2025.1.0-beta

82 Chapter 12. A Pre-implemented Module Flow

CHAPTER

THIRTEEN

RAPIDWRIGHT TUTORIALS

13.1 RWRoute Timing-driven Routing

Routes an example design (e.g. “gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp”).

This example was designed to show the default way to use RWRoute in the timing-driven mode and validate routing
results with Vivado.

13.1.1 Steps to Run

1. Download the example gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp design:

wget http://www.rapidwright.io/docs/_downloads/gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp

2. Invoke RWRoute via gradle (this will ensure code is compiled before running):

rapidwright RWRoute gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp gnl_2_4_7_3.0_gnl_3500_03_7_
→˓80_80_routed.dcp

The main entry point of RWRoute is RWRoute.java and is reproduced here for convenience:

/**
* The main interface of RWRoute that reads in a design checkpoint,

* and parses the arguments for the RWRouteConfig Object of the router.

* It instantiates a RWRoute Object or a PartialRouter Object

* based on the partialRouting parameter and calls the route method to route the
→˓design.

* @param args An array of strings that are used to create a RWRouteConfig Object for
→˓the router.

*/
public static void main(String[] args) {

if(args.length < 2){
System.out.println("USAGE: <input.dcp> <output.dcp>");
return;

}
// Reads the output directory and set the output design checkpoint file name
String routedDCPfileName = args[1];

CodePerfTracker t = new CodePerfTracker("RWRoute", true);

// Reads in a design checkpoint and routes it
Design routed = RWRoute.routeDesignWithUserDefinedArguments(Design.

→˓readCheckpoint(args[0]), args);
(continues on next page)

83

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

// Writes out the routed design checkpoint
routed.writeCheckpoint(routedDCPfileName,t);
System.out.println("\nINFO: Write routed design\n " + routedDCPfileName + "\n

→˓");
}

Please refer to the documentation Javadoc and code for more implementation details. The Java source code for
RWRoute is located in: src/com/xilinx/rapidwright/rwroute/.

13.1.2 Example Output

Example output using the gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp design is included below:

==
== RWRoute ==
==
==
== Reading DCP: gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp ==
==
XML Parse & Device Load: 2.593s

EDIF Parse: 1.003s
Read XDEF Header: 0.026s
Read XDEF Caches: 0.045s

Read XDEF Placement: 1.900s
Read XDEF Routing: 0.071s

--
[No GC] *Total*: 5.638s

==
== Route Design ==
==
INFO: Route 2123 pins of GLOBAL_LOGIC1
INFO: Estimated pre-routing max delay: 1969
--

Generated RRG Routed Nodes With CPD Total Run
Iteration RRG Nodes Time (s) Connections Overlaps (ps) Time (s)
--------- ---------------------- ----------- ---------- ----- ---------

1 238180 1.56 14952 3804 2469 2.32
2 14115 0.11 6923 2366 2308 0.71
3 14333 0.10 5103 1354 2308 0.83
4 14207 0.10 2933 542 2308 0.71
5 12593 0.09 1169 119 2323 0.66
6 11313 0.05 274 6 2331 0.29
7 587 0.00 56 0 2331 0.10

--

INFO: Route 0 direct connections

INFO: No PIP overlaps

==
== Statistics ==
==
Total wirelength: 12860
Route design: 8.21s

(continues on next page)

84 Chapter 13. RapidWright Tutorials

http://www.rapidwright.io/javadoc/index.html
https://github.com/Xilinx/RapidWright/tree/master/src/com/xilinx/rapidwright/rwroute

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Initialization: 1.95s
Routing: 6.26s

==
== Timing Report ==
==
Timing requirement (ps): 3000
Critical path delay (ps): 2331
Slack (ps): 669
With timing closure guarantee:
Critical path delay (ps): 2500
Slack (ps): 500

Detail delays:
--
Logic (ps) Net (ps) (intrasite (ps)) Total (ps) Netlist Resource(s)
---------- -------------------------- ---------- ------------------------

0 0 0 0 superSource
78 451 0 529 FD_n/Q

net: opr[57]
90 0 0 90 LUT5_1b7/I0
0 53 0 53 LUT5_1b7/O

net: nfd6
125 0 0 125 LUT3_1b6/I1
0 193 0 193 LUT3_1b6/O

net: nfd7
35 0 0 35 LUT5_1bd/I3
0 137 0 137 LUT5_1bd/O

net: n100c
115 0 0 115 LUT6_2_a4/LUT5/I2
0 242 60 242 LUT6_2_a4/LUT5/O

net: LUT6_2_a4/O5
115 0 0 115 LUT6_2_a5/LUT5/I2
0 253 60 253 LUT6_2_a5/LUT5/O

net: LUT6_2_a5/O5
100 0 0 100 LUT5_1bc/I3
0 194 60 194 LUT5_1bc/O

net: n1012
100 0 0 100 LUT2_1b5/I1
0 50 50 50 LUT2_1b5/O

net: nfea
0 0 0 0 FD_jmm/D

---------- -------------------------- ---------- ------------------------
Arrival time: 2331
--
==

Write EDIF: 0.145s
Writing XDEF Header: 0.195s

Writing XDEF Placement: 0.367s
Writing XDEF Routing: 0.453s

Writing XDEF Finalizing: 0.030s
Writing XDC: 0.006s

--
[No GC] *Total*: 1.196s

INFO: Write routed design
gnl_2_4_7_3.0_gnl_3500_03_7_80_80_routed.dcp

13.1. RWRoute Timing-driven Routing 85

RapidWright Documentation, Release 2025.1.0-beta

The output contains four main sections regarding reading the design checkpoint, RWRoute processing info, routing
statistics, and timing report. The log file shows that RWRoute successfully routes the design. The originally calculated
critical path delay is 2331 ps and it has been adjusted to 2500 ps through a pessimistic approach.

13.1.3 Validation with Vivado

To validate the routed design by Vivado, run the following at the prompt:

vivado -mode tcl gnl_2_4_7_3.0_gnl_3500_03_7_80_80_routed.dcp

and then run the following command at the Vivado Tcl prompt:

report_route_status

The resulting output should show the design is successfully routed, as all the routable nets are fully routed and there
is no nets with routing errors.

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 4937 :

of nets not needing routing.......... : 1082 :
of internally routed nets........ : 932 :
of implicitly routed ports....... : 150 :

of routable nets..................... : 3855 :
of fully routed nets............. : 3855 :

of nets with routing errors.......... : 0 :
--- : ----------- :

In Vivado 2020.1, the timing report shows that the design routed by RWRouote has a data path delay of 2.331 ns (2331
ps) for the same critical path. The full Vivado timing report is shown below:

--
→˓---
| Tool Version : Vivado v.2020.1 (lin64) Build 2902540 Wed May 27 19:54:35 MDT
→˓2020
| Date : Mon Nov 8 22:20:55 2021
| Host : yun-Latitude-3470 running 64-bit Ubuntu 16.04.7 LTS
| Command : report_timing
| Design : gnl_3500_03_7_80_80
| Device : xcvu3p-ffvc1517
| Speed File : -2 PRODUCTION 1.27 02-28-2020
Temperature Grade : E
→˓---

Timing Report

Slack (MET) : 0.649ns (required time - arrival time)
Source: FD_n/C

(rising edge-triggered cell FDRE clocked by clk
→˓{rise@0.000ns fall@1.500ns period=3.000ns})
Destination: FD_jmm/D

(rising edge-triggered cell FDRE clocked by clk
→˓{rise@0.000ns fall@1.500ns period=3.000ns})
Path Group: clk

(continues on next page)

86 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Path Type: Setup (Max at Slow Process Corner)
Requirement: 3.000ns (clk rise@3.000ns - clk rise@0.000ns)
Data Path Delay: 2.331ns (logic 0.753ns (32.304%) route 1.578ns (67.696%))
Logic Levels: 7 (LUT2=1 LUT3=1 LUT5=5)
Clock Path Skew: -0.010ns (DCD - SCD + CPR)

Destination Clock Delay (DCD): 0.020ns = (3.020 - 3.000)
Source Clock Delay (SCD): 0.030ns
Clock Pessimism Removal (CPR): 0.000ns

Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
Total System Jitter (TSJ): 0.071ns
Total Input Jitter (TIJ): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns

Location Delay type Incr(ns) Path(ns) Netlist
→˓Resource(s)
--- -------------

→˓------
(clock clk rise edge) 0.000 0.000 r

0.000 0.000 r clk (IN)
net (fo=1161, unset) 0.030 0.030 clk

SLICE_X22Y115 FDRE r FD_n/C
--- -------------

→˓------
SLICE_X22Y115 FDRE (Prop_DFF_SLICEM_C_Q)

0.078 0.108 r FD_n/Q
net (fo=21, routed) 0.523 0.631 opr[57]

SLICE_X14Y100 LUT5 (Prop_G6LUT_SLICEL_I0_O)
0.089 0.720 r LUT5_1b7/

→˓O
net (fo=2, routed) 0.050 0.770 nfd6

SLICE_X14Y100 LUT3 (Prop_B6LUT_SLICEL_I1_O)
0.124 0.894 r LUT3_1b6/

→˓O
net (fo=19, routed) 0.226 1.120 nfd7

SLICE_X13Y95 LUT5 (Prop_F6LUT_SLICEM_I3_O)
0.037 1.157 r LUT5_1bd/

→˓O
net (fo=4, routed) 0.139 1.296 LUT6_2_

→˓a4/I2
SLICE_X14Y95 LUT5 (Prop_C5LUT_SLICEL_I2_O)

0.110 1.406 r LUT6_2_
→˓a4/LUT5/O

net (fo=8, routed) 0.219 1.625 LUT6_2_
→˓a5/I2

SLICE_X14Y95 LUT5 (Prop_B5LUT_SLICEL_I2_O)
0.116 1.741 r LUT6_2_

→˓a5/LUT5/O
net (fo=2, routed) 0.213 1.954 n100f

SLICE_X14Y95 LUT5 (Prop_A5LUT_SLICEL_I3_O)
0.100 2.054 r LUT5_1bc/

→˓O
net (fo=2, routed) 0.157 2.211 n1012

SLICE_X14Y95 LUT2 (Prop_H6LUT_SLICEL_I1_O)
0.099 2.310 r LUT2_1b5/

→˓O
net (fo=1, routed) 0.051 2.361 nfea

(continues on next page)

13.1. RWRoute Timing-driven Routing 87

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

SLICE_X14Y95 FDRE r FD_jmm/D
--- -------------

→˓------

(clock clk rise edge) 3.000 3.000 r
0.000 3.000 r clk (IN)

net (fo=1161, unset) 0.020 3.020 clk
SLICE_X14Y95 FDRE r FD_jmm/C

clock pessimism 0.000 3.020
clock uncertainty -0.035 2.985

SLICE_X14Y95 FDRE (Setup_HFF_SLICEL_C_D)
0.025 3.010 FD_jmm

required time 3.010
arrival time -2.361

slack 0.649

It should be noted that the critical path reported by Vivado can be different from that of RWRoute for the same routed
design. This is reasonable, as they use different timing models. The main point is that RWRoute is able to estimate a
similar critical path delay to that of Vivado timing analysis.

13.2 RWRoute Wirelength-driven Routing

Routes an example design (e.g. “gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp”).

This example shows how to use RWRoute in the faster, wirelength-driven mode and validate routing results with
Vivado.

13.2.1 Steps to Run

1. Download the example gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp design:

wget http://www.rapidwright.io/docs/_downloads/gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp

2. Invoke RWRoute via gradle (this will ensure code is compiled before running):

rapidwright RWRoute gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp gnl_2_4_7_3.0_gnl_3500_03_7_
→˓80_80_routed.dcp --nonTimingDriven

Please refer to the documentation Javadoc and code for more implementation details. The Java source code for
RWRoute is located in: RapidWright/src/com/xilinx/rapidwright/rwroute/.

13.2.2 Example Output

Example output using the gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp design is included below:

==
== RWRoute ==
==
==
== Reading DCP: gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp ==

(continues on next page)

88 Chapter 13. RapidWright Tutorials

http://www.rapidwright.io/javadoc/index.html
https://github.com/Xilinx/RapidWright/tree/master/src/com/xilinx/rapidwright/rwroute

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

==
XML Parse & Device Load: 2.293s

EDIF Parse: 2.078s
Read XDEF Header: 0.054s
Read XDEF Caches: 0.060s

Read XDEF Placement: 0.511s
Read XDEF Routing: 0.100s

--
[No GC] *Total*: 5.097s

==
== Route Design ==
==
INFO: Route 2123 pins of GLOBAL_LOGIC1
--

Generated RRG Routed Nodes With Total Run
Iteration RRG Nodes Time (s) Connections Overlaps Time (s)
--------- ---------------------- ----------- ---------- ----------------

1 226748 0.94 14952 3847 1.83
2 11743 0.08 7082 2483 0.58
3 15013 0.10 5378 1343 0.70
4 18160 0.13 3235 566 0.73
5 17743 0.13 1411 106 0.53
6 5002 0.04 328 7 0.40
7 1654 0.01 30 0 0.06

--

INFO: Route 0 direct connections

INFO: No PIP overlaps

==
== Statistics ==
==
Total wirelength: 12309
Route design: 5.57s

Initialization: 0.25s
Routing: 5.32s

==
Write EDIF: 0.128s

Writing XDEF Header: 0.169s
Writing XDEF Placement: 0.464s

Writing XDEF Routing: 0.614s
Writing XDEF Finalizing: 0.051s

Writing XDC: 0.007s
--

[No GC] *Total*: 1.433s

INFO: Write routed design
gnl_2_4_7_3.0_gnl_3500_03_7_80_80_routed.dcp

The output contains three main sections regarding reading the design checkpoint, RWRoute processing info, and
routing statistics.

13.2.3 Validation with Vivado

To validate the routed design by Vivado, run the following at the prompt:

13.2. RWRoute Wirelength-driven Routing 89

RapidWright Documentation, Release 2025.1.0-beta

vivado -mode tcl gnl_2_4_7_3.0_gnl_3500_03_7_80_80_routed.dcp

and then run the following command at the Tcl prompt:

report_route_status

The design is successfully routed, as all the routable nets are fully routed and there is no nets with routing errors.

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 4937 :

of nets not needing routing.......... : 1082 :
of internally routed nets........ : 932 :
of implicitly routed ports....... : 150 :

of routable nets..................... : 3855 :
of fully routed nets............. : 3855 :

of nets with routing errors.......... : 0 :
--- : ----------- :

13.3 RWRoute Partial Routing

Routes an example design (e.g. “picoblaze_partial.dcp”).

This example was designed to show the way to use RWRoute in the partial mode for wirelength-driven routing and
validate routing results with Vivado.

13.3.1 Steps to Run

1. Download the example picoblaze_partial.dcp design:

wget http://www.rapidwright.io/docs/_downloads/picoblaze_partial.dcp

2. Invoke RWRoute via gradle (this will ensure code is compiled before running):

rapidwright PartialRouter picoblaze_partial.dcp picoblaze_partial_routed.dcp --
→˓nonTimingDriven

Please refer to the documentation Javadoc and code for more implementation details. The Java source code for
RWRoute is located in: src/com/xilinx/rapidwright/rwroute/.

13.3.2 Example Output

Example output using the picoblaze_partial.dcp design is included below:

==
== RWRoute ==
==
==
== Reading DCP: picoblaze_partial.dcp ==
==
XML Parse & Device Load: 2.365s

(continues on next page)

90 Chapter 13. RapidWright Tutorials

http://www.rapidwright.io/javadoc/index.html
https://github.com/Xilinx/RapidWright/tree/master/src/com/xilinx/rapidwright/rwroute

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

EDIF Parse: 1.108s
Read XDEF Header: 0.027s
Read XDEF Caches: 0.148s

Read XDEF Placement: 5.297s
Read XDEF Routing: 3.486s

--
[No GC] *Total*: 12.430s

==
== Route Design ==
==
--

Generated RRG Routed Nodes With Total Run
Iteration RRG Nodes Time (s) Connections Overlaps Time (s)
--------- ---------------------- ----------- ---------- ----------------

1 2705791 13.74 12144 10146 16.63
2 689195 1.94 6496 5093 5.14
3 482106 1.41 4037 1604 3.84
4 292903 0.94 1609 298 2.49
5 176537 0.54 336 45 1.62
6 178330 0.61 59 10 1.20
7 261196 1.40 12 2 2.83
8 250050 1.75 3 0 2.65

--

INFO: Route 0 direct connections

INFO: No PIP overlaps

==
== Statistics ==
==
Total wirelength: 101840
Route design: 41.73s

Initialization: 2.10s
Routing: 39.62s

==
Write EDIF: 0.209s

Writing XDEF Header: 1.744s
Writing XDEF Placement: 5.939s

Writing XDEF Routing: 3.902s
Writing XDEF Finalizing: 0.246s

Writing XDC: 0.008s
--

[No GC] *Total*: 12.048s

INFO: Write routed design
picoblaze_partial_routed.dcp

The output contains three main sections regarding reading the design checkpoint, RWRoute processing info, and
routing statistics.

13.3.3 Validation with Vivado

1. If you would like to visualize the original design shown in Vivado device view, run Vivado in its GUI mode:

13.3. RWRoute Partial Routing 91

RapidWright Documentation, Release 2025.1.0-beta

vivado

2. To load the original checkpoint, run the following command in the Tcl console:

open_checkpoint picoblaze_partial.dcp

3. After the original checkpoint is loaded, to highlighted unrouted nets, run:

highlight_objects -color red [get_nets * -filter {ROUTE_STATUS == UNROUTED}]

As a result, the device view of Vivado will show:

Nets highlighted in red are unrouted.

4. To check the route status of the origial design checkpoint, run:

report_route_status

The design route status is as follows:

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 147009 :

of nets not needing routing.......... : 58434 :
of internally routed nets........ : 47124 :
of nets with no loads............ : 11132 :
of implicitly routed ports....... : 178 :

of routable nets..................... : 88575 :
of unrouted nets................. : 12144 :
of fully routed nets............. : 76431 :

(continues on next page)

92 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

of nets with routing errors.......... : 0 :
--- : ----------- :

It is shown that there are 12144 unrouted nets.

5. To load the routed design checkpoint into Vivado and validate the routed design by RWRoute, run:

open_checkpoint picoblaze_partial_routed.dcp
report_route_status

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 147009 :

of nets not needing routing.......... : 58434 :
of internally routed nets........ : 47124 :
of nets with no loads............ : 11132 :
of implicitly routed ports....... : 178 :

of routable nets..................... : 88575 :
of fully routed nets............. : 88575 :

of nets with routing errors.......... : 0 :
--- : ----------- :

The design is successfully routed, as all the routable nets are fully routed.

13.4 RapidWright Report Timing Example

Reports the critical path within an example design (e.g. “microblaze4.dcp”).

13.4. RapidWright Report Timing Example 93

RapidWright Documentation, Release 2025.1.0-beta

13.4.1 Background

Please see our FPT‘19 paper, "An Open-source Lightweight Timing Model for RapidWright"
(Presentation) for background details on our RapidWright Timing Model.

13.4.2 Steps to Run

1. Download the example microblaze4.dcp design:

wget http://www.rapidwright.io/docs/_downloads/microblaze4.dcp

2. Invoke RWRoute via gradle (this will ensure code is compiled before running):

rapidwright ReportTimingExample microblaze4.dcp

The source code for ReportTimingExample.java is provided below for easy reference:

public static void main(String[] args) {
if(args.length != 1) {

System.out.println("USAGE: <dcp_file_name>");
return;

}
CodePerfTracker t = new CodePerfTracker("Report Timing Example");
t.useGCToTrackMemory(true);

// Read in an example placed and routed DCP
t.start("Read DCP");
Design design = Design.readCheckpoint(args[0], CodePerfTracker.SILENT);

// Instantiate and populate the timing manager for the design
t.stop().start("Create TimingManager");
TimingManager tim = new TimingManager(design);

// Get and print out worst data path delay in design
t.stop().start("Get Max Delay");
GraphPath<TimingVertex, TimingEdge> criticalPath = tim.getTimingGraph().

→˓getMaxDelayPath();

// Print runtime summary
t.stop().printSummary();
System.out.println("\nCritical path: "+ ((int)criticalPath.getWeight())+

→˓" ps");
System.out.println("\nPath details:");
System.out.println(criticalPath.toString().replace(",", ",\n")+"\n");

}

13.4.3 Example Output

Please refer to the timing library Javadoc and code for more implementation details. The Java source code for the
timing library is located in: RapidWright/src/com/xilinx/rapidwright/timing/.

Example output using the microblaze4.dcp design is included below:

94 Chapter 13. RapidWright Tutorials

http://www.rapidwright.io/javadoc/index.html
https://github.com/Xilinx/RapidWright/tree/master/src/com/xilinx/rapidwright/timing

RapidWright Documentation, Release 2025.1.0-beta

==
== Report Timing Example ==
==

Read DCP: 6.275s 436.922MBs
Create TimingManager: 1.838s 19.600MBs

Get Max Delay: 0.087s 0.213MBs
--

Total: 8.200s 456.734MBs

Critical path: 1921 ps

Path details:
[superSource -> microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/

→˓Operand_Select_I/EX_Op2_reg[31]/Q,
microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Operand_Select_I/

→˓EX_Op2_reg[31]/Q -> microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/
→˓ALU_I/Using_FPGA.ALL_Bits[31].ALU_Bit_I1/Not_Last_Bit.I_ALU_LUT_V5/Using_FPGA.
→˓Native/LUT6/I0,

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Using_FPGA.
→˓ALL_Bits[31].ALU_Bit_I1/Not_Last_Bit.I_ALU_LUT_V5/Using_FPGA.Native/LUT6/I0 ->
→˓microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Using_FPGA.ALL_
→˓Bits[31].ALU_Bit_I1/Not_Last_Bit.I_ALU_LUT_V5/Using_FPGA.Native/LUT6/O,

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Using_FPGA.
→˓ALL_Bits[31].ALU_Bit_I1/Not_Last_Bit.I_ALU_LUT_V5/Using_FPGA.Native/LUT6/O ->
→˓microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Use_Carry_
→˓Decoding.CarryIn_MUXCY/Using_FPGA.Native_CARRY4_CARRY8/S[1],

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Use_Carry_
→˓Decoding.CarryIn_MUXCY/Using_FPGA.Native_CARRY4_CARRY8/S[1] -> microblaze_0/U0/
→˓MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Use_Carry_Decoding.CarryIn_
→˓MUXCY/Using_FPGA.Native_CARRY4_CARRY8/CO[7],

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Use_Carry_
→˓Decoding.CarryIn_MUXCY/Using_FPGA.Native_CARRY4_CARRY8/CO[7] -> microblaze_0/U0/
→˓MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Using_FPGA.ALL_Bits[24].ALU_
→˓Bit_I1/Not_Last_Bit.MUXCY_XOR_I/Using_FPGA.Native_I1_CARRY4_CARRY8/CI,

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Using_FPGA.
→˓ALL_Bits[24].ALU_Bit_I1/Not_Last_Bit.MUXCY_XOR_I/Using_FPGA.Native_I1_CARRY4_CARRY8/
→˓CI -> microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Using_
→˓FPGA.ALL_Bits[24].ALU_Bit_I1/Not_Last_Bit.MUXCY_XOR_I/Using_FPGA.Native_I1_CARRY4_
→˓CARRY8/O[2],

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/ALU_I/Using_FPGA.
→˓ALL_Bits[24].ALU_Bit_I1/Not_Last_Bit.MUXCY_XOR_I/Using_FPGA.Native_I1_CARRY4_CARRY8/
→˓O[2] -> microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/Using_FPGA.
→˓Native_i_1__73/I0,

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/Using_FPGA.Native_i_
→˓1__73/I0 -> microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/Using_FPGA.
→˓Native_i_1__73/O,

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/Using_FPGA.Native_i_
→˓1__73/O -> microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/PreFetch_
→˓Buffer_I1/Instruction_Prefetch_Mux[33].Gen_Instr_DFF/Using_FPGA.Native_i_1__33/I0,

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/PreFetch_Buffer_I1/
→˓Instruction_Prefetch_Mux[33].Gen_Instr_DFF/Using_FPGA.Native_i_1__33/I0 ->
→˓microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/PreFetch_Buffer_I1/
→˓Instruction_Prefetch_Mux[33].Gen_Instr_DFF/Using_FPGA.Native_i_1__33/O,

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Decode_I/PreFetch_Buffer_I1/
→˓Instruction_Prefetch_Mux[33].Gen_Instr_DFF/Using_FPGA.Native_i_1__33/O ->
→˓microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Operand_Select_I/EX_
→˓Branch_CMP_Op1_reg[22]/D,

(continues on next page)

13.4. RapidWright Report Timing Example 95

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Operand_Select_I/
→˓EX_Branch_CMP_Op1_reg[22]/D -> superSink]

The GraphPath<TimingVertex, TimingEdge> object contains a path/set of edges. From each
TimingEdge you can access the net delay and/or the logic delay values for more detail.

This example was designed to illustrate the default way to use the timing library to report the critical path and its
associated data path delay.

13.4.4 Compare with Vivado

To compare the output of the RapidWright timing model to Vivado, run the following at the prompt:

vivado -mode tcl microblaze4.dcp

and then run the following command at the Tcl prompt:

report_timing

In Vivado 2020.1, the timing report shows a data path delay of 1.846 ns (1846 ps). Which has an error of 30 ps or
~1.6%. The full Vivado timing report is shown below:

--
→˓---
| Tool Version : Vivado v.2020.1 (lin64) Build 2902540 Wed May 27 19:54:35 MDT
→˓2020
| Date : Mon Nov 8 22:17:03 2021
| Host : yun-Latitude-3470 running 64-bit Ubuntu 16.04.7 LTS
| Command : report_timing
| Design : design_1
| Device : xcvu3p-ffvc1517
| Speed File : -2 PRODUCTION 1.27 02-28-2020
Temperature Grade : E
→˓---

Timing Report

Slack (MET) : 0.051ns (required time - arrival time)
Source: microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_
→˓I/Operand_Select_I/EX_Branch_CMP_Op1_reg[8]/C

(rising edge-triggered cell FDRE clocked by TS_clk
→˓{rise@0.000ns fall@1.000ns period=2.000ns})
Destination: microblaze_0/U0/MicroBlaze_Core_I/Performance.Core/Use_Debug_
→˓Logic.Master_Core.Debug_Perf/single_step_count_reg[0]/CE

(rising edge-triggered cell FDRE clocked by TS_clk
→˓{rise@0.000ns fall@1.000ns period=2.000ns})
Path Group: TS_clk
Path Type: Setup (Max at Slow Process Corner)
Requirement: 2.000ns (TS_clk rise@2.000ns - TS_clk rise@0.000ns)
Data Path Delay: 1.846ns (logic 0.730ns (39.545%) route 1.116ns (60.455%))
Logic Levels: 7 (CARRY8=4 LUT2=1 LUT4=1 LUT6=1)
Clock Path Skew: -0.007ns (DCD - SCD + CPR)
Destination Clock Delay (DCD): 0.021ns = (2.021 - 2.000)
Source Clock Delay (SCD): 0.028ns

(continues on next page)

96 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Clock Pessimism Removal (CPR): 0.000ns
Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
Total System Jitter (TSJ): 0.071ns
Total Input Jitter (TIJ): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns

Location Delay type Incr(ns) Path(ns) Netlist
→˓Resource(s)
--- ---------------
→˓----

(clock TS_clk rise edge) 0.000 0.000 r
0.000 0.000 r Clk_0 (IN)

net (fo=835, unset) 0.028 0.028 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Operand_Select_I/Clk
SLICE_X75Y108 FDRE r microblaze_0/U0/
→˓MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Operand_Select_I/EX_Branch_CMP_Op1_
→˓reg[8]/C
--- ---------------
→˓----
SLICE_X75Y108 FDRE (Prop_DFF2_SLICEL_C_Q)

0.081 0.109 f microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Operand_Select_I/EX_Branch_CMP_
→˓Op1_reg[8]/Q

net (fo=1, routed) 0.300 0.409 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Zero_Detect_I/Using_FPGA.Native_
→˓0[21]
SLICE_X75Y108 LUT6 (Prop_C6LUT_SLICEL_I2_O)

0.088 0.497 r microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Zero_Detect_I/S0_inferred__3/i_/O

net (fo=1, routed) 0.010 0.507 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Zero_Detect_I/Part_Of_Zero_Carry_
→˓Start/lopt_5
SLICE_X75Y108 CARRY8 (Prop_CARRY8_SLICEL_S[2]_CO[7])

0.155 0.662 f microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Data_Flow_I/Zero_Detect_I/Part_Of_Zero_Carry_
→˓Start/Using_FPGA.Native_CARRY4_CARRY8/CO[7]

net (fo=1, routed) 0.026 0.688 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/jump_logic_I1/MUXCY_JUMP_CARRY2/jump_
→˓carry1
SLICE_X75Y109 CARRY8 (Prop_CARRY8_SLICEL_CI_CO[1])

0.042 0.730 f microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/jump_logic_I1/MUXCY_JUMP_CARRY2/
→˓Using_FPGA.Native_CARRY4_CARRY8/CO[1]

net (fo=1, routed) 0.117 0.847 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/jump_logic_I1/MUXCY_JUMP_CARRY3/ex_
→˓jump_wanted
SLICE_X74Y109 LUT4 (Prop_D6LUT_SLICEM_I0_O)

0.051 0.898 r microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/jump_logic_I1/MUXCY_JUMP_CARRY3/
→˓Using_FPGA.Native_i_1__100/O

net (fo=1, routed) 0.025 0.923 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/mem_wait_on_ready_N_carry_or/MUXCY_I/
→˓lopt_9
SLICE_X74Y109 CARRY8 (Prop_CARRY8_SLICEM_S[3]_CO[7])

0.163 1.086 r microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/mem_wait_on_ready_N_carry_or/MUXCY_I/
→˓Using_FPGA.Native_CARRY4_CARRY8/CO[7] (continues on next page)

13.4. RapidWright Report Timing Example 97

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

net (fo=1, routed) 0.026 1.112 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/Use_MuxCy[7].OF_Piperun_Stage/MUXCY_
→˓I/of_PipeRun_carry_5
SLICE_X74Y110 CARRY8 (Prop_CARRY8_SLICEM_CI_CO[4])

0.099 1.211 r microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Decode_I/Use_MuxCy[7].OF_Piperun_Stage/MUXCY_
→˓I/Using_FPGA.Native_CARRY4_CARRY8/CO[4]

net (fo=324, routed) 0.472 1.683 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Use_Debug_Logic.Master_Core.Debug_Perf/of_
→˓piperun_for_ce
SLICE_X80Y99 LUT2 (Prop_F6LUT_SLICEM_I1_O)

0.051 1.734 r microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Use_Debug_Logic.Master_Core.Debug_Perf/single_
→˓step_count[0]_i_1/O

net (fo=2, routed) 0.140 1.874 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Use_Debug_Logic.Master_Core.Debug_Perf/single_
→˓step_count[0]_i_1_n_0
SLICE_X80Y99 FDRE r microblaze_0/U0/
→˓MicroBlaze_Core_I/Performance.Core/Use_Debug_Logic.Master_Core.Debug_Perf/single_
→˓step_count_reg[0]/CE
--- ---------------
→˓----

(clock TS_clk rise edge) 2.000 2.000 r
0.000 2.000 r Clk_0 (IN)

net (fo=835, unset) 0.021 2.021 microblaze_0/
→˓U0/MicroBlaze_Core_I/Performance.Core/Use_Debug_Logic.Master_Core.Debug_Perf/Clk
SLICE_X80Y99 FDRE r microblaze_0/U0/
→˓MicroBlaze_Core_I/Performance.Core/Use_Debug_Logic.Master_Core.Debug_Perf/single_
→˓step_count_reg[0]/C

clock pessimism 0.000 2.021
clock uncertainty -0.035 1.986

SLICE_X80Y99 FDRE (Setup_HFF2_SLICEM_C_CE)
-0.061 1.925 microblaze_0/

→˓U0/MicroBlaze_Core_I/Performance.Core/Use_Debug_Logic.Master_Core.Debug_Perf/single_
→˓step_count_reg[0]

required time 1.925
arrival time -1.874

slack 0.051

13.5 Reuse Timing-closed Logic As A Shell

13.5.1 Background

Often in FPGA development, a desirable timing-closed implementation is only achieved after several iterations or
many parallel implementation runs of a design. Elusive timing closure can be caused by one or a few stubborn modules
in a design that have tight constraints or a large number of moderately difficult paths that have a lower probability of
timing closure on any given run.

One advantageous strategy to improve timing closure success can be to preserve and enable reuse of a known good
implementation of the stubborn logic. By preserving the implementation, place and route tools can (hopefully) avoid
rediscovering difficult timing closure and simply focus on the other logic.

98 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

Some traditional approaches in Vivado to employ this preservation strategy might be to use or Incremental Imple-
mentation Flows Dynamic Function eXchange (DFX, previously known as partial reconfiguration or PR). Incremental
Implementation Flows can work if the design has mostly converged and the amount of future changes to the design is
small. However, if significant development still remains, this strategy is unlikely to save compile time.

Using DFX, one can lock down a portion of the design to form a reusable shell along with one or more reconfigurable
partitions that contains logic under development. However, using DFX for this reuse methodology comes with some
additional restrictions such as requiring area constraints and partition pin placements between the static and dynamic
partitions of the design. It is more difficult to achieve an overlap of the preserved logic and the new logic and the
nature of DFX requires additional DRCs that would not normally be run without using DFX.

This tutorial offers an alternative to the DFX flow with fewer restrictions and the ability to reused timing-closed logic
without the need of area constraints by using the capabilities inherent in RapidWright.

13.5.2 Approach

To enable reuse of a timing-closed design as a shell in RapidWright, the original design will need some minor modifi-
cations.

1. The design should be logically partitioned into two parts: static and dynamic (as shown in the diagram above).
The static part of the design is everything that should be preserved and be part of the “shell”. For example,
many designs include components for handling network, DDR memory or a PCIe interface. These kinds of
modules typically will have more demanding timing constraints and benefit from reusing their timing closure.
The dynamic component is the portion of the design that the designer wants to change over time. The main
requirement is that the dynamic component must be composed of one or more logical modules. If there is logic
that needs to be modified at the top level of the design, it should be migrated into an existing module or a new
module should be created and the logic added to it.

2. The interface of the dynamic modules must be consistent with all future logic modules that will populate it.
In theory, this is straight-forward. However, during synthesis, design optimization, placement and routing,
optimizations can modify the original interface of a module so that it no longer is consistent with the orig-
inal definition and subsequent runs can cause divergence. To avoid this, dynamic modules should have the

13.5. Reuse Timing-closed Logic As A Shell 99

https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Using-Incremental-Implementation-Flows
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Using-Incremental-Implementation-Flows
https://docs.xilinx.com/r/en-US/ug909-vivado-partial-reconfiguration/Introduction-to-Dynamic-Function-eXchange

RapidWright Documentation, Release 2025.1.0-beta

DONT_TOUCH synthesis attribute applied to the module instance. The alternative KEEP_HIERARCHY is not
sufficient as DONT_TOUCH will stay persistent on the netlist through routing whereas KEEP_HIERARCHY will
only persist through synthesis.

Note that applying DONT_TOUCH to a module instance means that Vivado cannot add or remove pins of the instance,
but can connect or disconnect pins and optimize logic inside the hierarchical module. Once the design is properly
partitioned and synthesis attributes applied to dynamic modules, the design should be implemented using the typical
implementation flow in Vivado. Once a fully placed and routed implementation that meets all requirements has been
achieved, this design can be preserved as a design checkpoint (DCP) and used to seed the shell creation process.

This candidate shell design can then be loaded into RapidWright and all dynamic modules turned into black boxes.

13.5.3 Getting Started

1. Prerequisites

To run this tutorial, you will need:

1. RapidWright 2023.1.3 or later

2. Vivado 2023.1 or later

2. Creating a Candidate Implementation

For the ease of demonstration purposes in this tutorial, we have chosen a simple RISCV design targeting a KCU105
board (Kintex UltraScale xcku040-ffva1156-2-e). The design was created using the Linux on LiteX-VexRiscv
project, but we will recreate the design using a minimal set of steps and dependencies.

Note: This design compilation step can take up to 30 minutes to complete and it is highly recommended to skip past
it to save time. To do so, you can download the output files instead by running:

wget http://www.rapidwright.io/docs/_downloads/kcu105_step2.zip
unzip kcu105_step2.zip
cd kcu105
vivado &

and then skip to step 3.

To get started, follow the commands below to download the source files:

wget http://www.rapidwright.io/docs/_downloads/kcu105_example.zip
unzip kcu105_example.zip
cd kcu105
vivado -source kcu105.tcl &

The included script will create a Vivado project, load the generated Verilog and synthesize, optimize and place
and route the design. The Verilog module for one of the RISCV CPUs has already been annotated for you with
DONT_TOUCH and will serve as our dynamic module for this tutorial. The script will take several minutes to complete
but will generate a placed and routed DCP and EDIF file ready for RapidWright. Notice we are running Vivado in the
background as we will come back to the terminal shortly.

A sample result is shown in the image below with the leaf cells of CPU core (cores_1_cpu_logic_cpu) high-
lighted in yellow.

100 Chapter 13. RapidWright Tutorials

https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis/DONT_TOUCH-Verilog-Examples
https://github.com/litex-hub/linux-on-litex-vexriscv

RapidWright Documentation, Release 2025.1.0-beta

Out of convenience for this tutorial, we will generate the logic that will populate the dynamic module directly from
this project. We simply need to change the top of the design to the VexRiscv_1 core and then resynthesize using
the -mode out_of_context option:

set_property top VexRiscv_1 [current_fileset]
reset_run synth_1
synth_design -mode out_of_context
write_checkpoint riscv_1_synth.dcp

At this point we should have two DCPs, one placed and routed candidate DCP to be made into a shell and one
synthesized RISCV core that will populate the dynamic region in our shell.

3. Creating a Shell

To create a shell implementation, we need to take our top-level RISCV design that has the static portion meeting all
necessary constraints and remove all logic from the dynamic components.

To remove the logic in the dynamic module, we need to use RapidWright in order to carefully separate the static logic
from the dynamic logic as no area constraints (i.e. pblocks) were used to separate the two. Vivado can create a black
box but can only do so correctly when the module made into a black box was sufficiently constrained such that all of
its logic does not share any sites with any static logic. RapidWright has a built-in command that can accept a DCP and
one or more cell instance names and produce a shell-based design with the cell instances turned into black boxes. For
our example, we can run RapidWright from the command line (outside of Vivado):

rapidwright MakeBlackBox kcu105_route.dcp kcu105_route_shell.dcp
→˓VexRiscvLitexSmpCluster_Cc4_Iw64Is8192Iy2_Dw64Ds8192Dy2_ITs4DTs4_Ldw512_Cdma_Ood/
→˓cores_1_cpu_logic_cpu

This will create a new “shell” DCP (kcu105_route_shell.dcp) where the dynamic module has been turned
into a black box. This DCP can then be used again and again as a base starting point as it contains an implemented
solution for all of the static logic and we will use Vivado (and RapidWright in the future) to place and route additional
dynamic modules on top of it.

13.5. Reuse Timing-closed Logic As A Shell 101

RapidWright Documentation, Release 2025.1.0-beta

4. Populating a Black Box

Returning to our running Vivado instance, we can close our previous project and load the shell DCP using
open_checkpoint at the Tcl command prompt:

close_project
open_checkpoint kcu105_route_shell.dcp

Note: Due to the large number of constraints generated in RapidWright, opening the checkpoint might take a few
minutes.

If RapidWright was able to correctly create the black box, you should see exactly one critical warning, which may
show up in a dialog from Vivado as shown below:

The implemented design will look similar to the original design, except that the cells previously highlighted in yellow
above will be missing:

102 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

You may also notice that several BEL sites have been marked with a PROHIBIT property that prevents any cells from
being placed in those locations. Through experimentation, it has been found that cells placed in the same half SLICE
as those in the existing static logic portion of the design can lead to congestion. Therefore, RapidWright adds the
PROHIBIT property to the remaining BEL sites in any occupied half SLICEs to avoid this issue. These prohibited
locations can be seen in the image below (the red circles with a slash):

13.5. Reuse Timing-closed Logic As A Shell 103

RapidWright Documentation, Release 2025.1.0-beta

We can also verify that the design is consistent by checking the routing status:

report_route_status

Which should return a result something like this:

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 65546 :

of nets not needing routing.......... : 23431 :
of internally routed nets........ : 20613 :
of nets with no loads............ : 2818 :

of routable nets..................... : 42115 :
of unrouted nets................. : 38 :
of fully routed nets............. : 42077 :

of nets with routing errors.......... : 0 :
--- : ----------- :

The key element to look for is that there are no nets with routing errors. Since we see that value is 0 we can proceed.

At this point, we want to lock down the implementation so that further place and route runs do not upset the timing

104 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

closure of the design. We can do this by running the Vivado Tcl command:

lock_design -level routing

This tags the netlist, placement and routing such that place_design and route_design do not modify the netlist
of the existing implementation–thus preserving the original timing closure.

To populate the black box with the synthesized, out-of-context version of the RISCV core, we can load it directly in
Vivado with read_checkpoint -cell (this is different from open_checkpoint).

read_checkpoint -cell VexRiscvLitexSmpCluster_Cc4_Iw64Is8192Iy2_Dw64Ds8192Dy2_
→˓ITs4DTs4_Ldw512_Cdma_Ood/cores_1_cpu_logic_cpu riscv_1_synth.dcp

Once the dynamic module has been loaded with the synthesized RISCV core, we can implement the design and check
the results

We need to waive a DRC due to the nature of the design
set_msg_config -id {Common 17-55} -new_severity {Warning}
set_property SEVERITY {Warning} [get_drc_checks REQP-1753]
place_design
route_design
report_route_status
report_timing

Results should looks similar to:

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 75917 :

of nets not needing routing.......... : 28293 :
of internally routed nets........ : 24553 :
of nets with no loads............ : 3740 :

of routable nets..................... : 47624 :
of nets with fixed routing....... : 41853 :
of fully routed nets............. : 47624 :

of nets with routing errors.......... : 0 :
--- : ----------- :

and should meet timing:

Timing Report

Slack (MET) : 0.253ns (required time - arrival time)
Source: main_crg_idelayctrl_ic_reset_reg/C

(rising edge-triggered cell FDRE clocked by main_crg_
→˓clkout1 {rise@0.000ns fall@2.500ns period=5.000ns})
Destination: IDELAYCTRL_REPLICATED_0_2/RST

(recovery check against rising-edge clock main_crg_
→˓clkout1 {rise@0.000ns fall@2.500ns period=5.000ns})
Path Group: **async_default**
Path Type: Recovery (Max at Slow Process Corner)
Requirement: 5.000ns (main_crg_clkout1 rise@5.000ns - main_crg_clkout1

→˓rise@0.000ns)
Data Path Delay: 3.838ns (logic 0.117ns (3.048%) route 3.721ns (96.952%))
Logic Levels: 0
Clock Path Skew: -0.211ns (DCD - SCD + CPR)
Destination Clock Delay (DCD): 5.765ns = (10.765 - 5.000)

(continues on next page)

13.5. Reuse Timing-closed Logic As A Shell 105

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Source Clock Delay (SCD): 6.087ns
Clock Pessimism Removal (CPR): 0.112ns

Clock Uncertainty: 0.065ns ((TSJ^2 + DJ^2)^1/2) / 2 + PE
Total System Jitter (TSJ): 0.071ns
Discrete Jitter (DJ): 0.108ns
Phase Error (PE): 0.000ns

Clock Net Delay (Source): 2.666ns (routing 1.174ns, distribution 1.492ns)
Clock Net Delay (Destination): 2.359ns (routing 1.078ns, distribution 1.281ns)

Location Delay type Incr(ns) Path(ns) Netlist
→˓Resource(s)
--- -------------

→˓------
(clock main_crg_clkout1 rise edge)

0.000 0.000 r
G10 0.000 0.000 r clk125_p (IN)

net (fo=0) 0.001 0.001 IBUFDS/I
HPIOBDIFFINBUF_X1Y59 DIFFINBUF (Prop_DIFFINBUF_HPIOBDIFFINBUF_DIFF_IN_P_O)

0.521 0.522 r IBUFDS/
→˓DIFFINBUF_INST/O

net (fo=1, routed) 0.090 0.612 IBUFDS/OUT
G10 IBUFCTRL (Prop_IBUFCTRL_HPIOB_I_O)

0.000 0.612 r IBUFDS/
→˓IBUFCTRL_INST/O

net (fo=1, routed) 0.750 1.362 IBUFDS_n_0_
→˓BUFG_inst_n_0

BUFGCE_X1Y52 BUFGCE (Prop_BUFCE_BUFGCE_I_O)
0.083 1.445 r IBUFDS_n_0_

→˓BUFG_inst/O
net (fo=9, routed) 1.687 3.132 main_crg_

→˓clkin
MMCME3_ADV_X1Y2 MMCME3_ADV (Prop_MMCME3_ADV_CLKIN1_CLKOUT1)

-0.231 2.901 r MMCME2_ADV/
→˓CLKOUT1

net (fo=1, routed) 0.437 3.338 main_crg_
→˓clkout1

BUFGCE_X1Y69 BUFGCE (Prop_BUFCE_BUFGCE_I_O)
0.083 3.421 r BUFG/O

X0Y1 (CLOCK_ROOT) net (fo=31, routed) 2.666 6.087 idelay_clk
SLICE_X0Y139 FDRE r main_crg_

→˓idelayctrl_ic_reset_reg/C
--- -------------

→˓------
SLICE_X0Y139 FDRE (Prop_HFF2_SLICEL_C_Q)

0.117 6.204 f main_crg_
→˓idelayctrl_ic_reset_reg/Q

net (fo=25, routed) 3.721 9.925 main_crg_
→˓idelayctrl_ic_reset

BITSLICE_CONTROL_X0Y3
IDELAYCTRL f IDELAYCTRL_

→˓REPLICATED_0_2/RST
--- -------------

→˓------

(clock main_crg_clkout1 rise edge)
5.000 5.000 r

G10 0.000 5.000 r clk125_p (IN)
(continues on next page)

106 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

net (fo=0) 0.001 5.001 IBUFDS/I
HPIOBDIFFINBUF_X1Y59 DIFFINBUF (Prop_DIFFINBUF_HPIOBDIFFINBUF_DIFF_IN_P_O)

0.324 5.325 r IBUFDS/
→˓DIFFINBUF_INST/O

net (fo=1, routed) 0.051 5.376 IBUFDS/OUT
G10 IBUFCTRL (Prop_IBUFCTRL_HPIOB_I_O)

0.000 5.376 r IBUFDS/
→˓IBUFCTRL_INST/O

net (fo=1, routed) 0.649 6.025 IBUFDS_n_0_
→˓BUFG_inst_n_0

BUFGCE_X1Y52 BUFGCE (Prop_BUFCE_BUFGCE_I_O)
0.075 6.100 r IBUFDS_n_0_

→˓BUFG_inst/O
net (fo=9, routed) 1.524 7.624 main_crg_

→˓clkin
MMCME3_ADV_X1Y2 MMCME3_ADV (Prop_MMCME3_ADV_CLKIN1_CLKOUT1)

0.335 7.959 r MMCME2_ADV/
→˓CLKOUT1

net (fo=1, routed) 0.372 8.331 main_crg_
→˓clkout1

BUFGCE_X1Y69 BUFGCE (Prop_BUFCE_BUFGCE_I_O)
0.075 8.406 r BUFG/O

X0Y1 (CLOCK_ROOT) net (fo=31, routed) 2.359 10.765 idelay_clk
BITSLICE_CONTROL_X0Y3

IDELAYCTRL r IDELAYCTRL_
→˓REPLICATED_0_2/REFCLK

clock pessimism 0.112 10.876
clock uncertainty -0.065 10.812

BITSLICE_CONTROL_X0Y3
IDELAYCTRL (Recov_CONTROL_BITSLICE_CONTROL_REFCLK_RST)

-0.633 10.179 IDELAYCTRL_
→˓REPLICATED_0_2

required time 10.179
arrival time -9.925

slack 0.253

The final implementation with the newly populated dynamic module highlighted in green is shown below.

13.5. Reuse Timing-closed Logic As A Shell 107

RapidWright Documentation, Release 2025.1.0-beta

Complexity can vary widely amongst different designs, so not all designs may benefit from this approach. However,
please reach out to the RapidWright team if you encounter challenges when applying this approach for your own
projects.

13.6 Use DREAMPlaceFPGA to Place a Netlist via FPGA Interchange
Format

13.6.1 Background

DREAMPlaceFPGA is an open source GPU-accelerated placer for FPGAs that uses a deep learning toolkit. It is
being developed at the University of Texas at Austin in Dr. David Pan’s research group. DREAMPlaceFPGA has
published work demonstrating some compelling placement runtime acceleration compared to other published placers.
DREAMPlaceFPGA has also adopted support for the FPGA Interchange Format.

The FPGA Interchange Format (FPGAIF) is a standard exchange format designed to provide all the information
necessary to perform placement and routing in an open source context. See FPGA Interchange Format for additional
details and resources.

13.6.2 Approach

This tutorial will demonstrate how to convert an existing design from Vivado into the FPGA Interchange Format to be
placed in DREAMPlaceFPGA. It will then demonstrate how the resulting placed design can be routed either by the
router in Vivado or in RapidWright via RWRoute as shown in the diagram below.

108 Chapter 13. RapidWright Tutorials

https://github.com/Xilinx/RapidWright/discussions
https://github.com/rachelselinar/DREAMPlaceFPGA
https://github.com/rachelselinar/DREAMPlaceFPGA/tree/main/IFsupport

RapidWright Documentation, Release 2025.1.0-beta

13.6.3 Getting Started

1. Prerequisites

To run this tutorial, you will need:

1. RapidWright 2023.1.3 or later

2. Vivado 2023.1 or later

3. DREAMPlaceFPGA commit fb6d086

Attention: If you are using a pre-configured AWS Instance from a RapidWright hands-on conference event,
DREAMPlaceFPGA has already been setup for you in ~/DREAMPlaceFPGA.

To checkout and build DREAMPlaceFPGA, please see their build instructions. Also see the note here for how to
generate an FPGA Interchange device model file. Our notes on the install process for CentOS 7 can be found here:
Notes on Setting Up DREAMPlaceFPGA.

2. Getting an example design and converting it to the FPGA Interchange Format

For the ease of demonstration purposes in this tutorial, we have chosen a simple design targeting a VU3P (Virtex Ul-
traScale+ xcvu3p-ffvc1517-2-e). To get started, follow the commands below (alternate design DCP download
link here: gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp):

wget http://www.rapidwright.io/docs/_downloads/gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp
rapidwright DcpToInterchange gnl_2_4_7_3.0_gnl_3500_03_7_80_80.dcp

This will convert the design checkpoint file into two files:

13.6. Use DREAMPlaceFPGA to Place a Netlist via FPGA Interchange Format 109

https://github.com/rachelselinar/DREAMPlaceFPGA/commit/fb6d086ed082f8404123679ec59d53e7116b3f2e
https://github.com/rachelselinar/DREAMPlaceFPGA#build
https://github.com/rachelselinar/DREAMPlaceFPGA/tree/main/IFsupport#i-generate-the-bookshelf-files-from-the-interchange-format-if-netlist

RapidWright Documentation, Release 2025.1.0-beta

1. gnl_2_4_7_3.0_gnl_3500_03_7_80_80.netlist – a logical netlist file in the FPGA Interchange
Format

2. gnl_2_4_7_3.0_gnl_3500_03_7_80_80.phys – a physical netlist (placement and routing informa-
tion) file in the FPGA Interchange Format

For this tutorial, we are only interested in #1 (the logical netlist) as we will be generating a new implementation with
the tools mentioned above.

3. Placing the design with DREAMPlaceFPGA

There are a few preparatory steps in order to perform a placement run with DREAMPlaceFPGA. Currently, DREAM-
PlaceFPGA reads Interchange files by converting them to bookshelf format consistent with the ISPD‘16 contest.
Convert the example DCP with the following command:

cd DREAMPlaceFPGA # Or wherever your DREAMPlaceFPGA installation is located
python3 IFsupport/IF2bookshelf.py --netlist ../gnl_2_4_7_3.0_gnl_3500_03_7_80_80.
→˓netlist

Next, DREAMPlaceFPGA uses a JSON settings file to configure the placement run that we need to configure. Here
is an example JSON settings file for our example design (which you can also download here gnl_2_4_7_3.
0_gnl_3500_03_7_80_80.json):

wget -O test/gnl_2_4_7_3.0_gnl_3500_03_7_80_80.json http://www.rapidwright.io/docs/_
→˓downloads/gnl_2_4_7_3.0_gnl_3500_03_7_80_80.json

{
"aux_input" : "benchmarks/IF2bookshelf/gnl_2_4_7_3.0_gnl_3500_03_7_80_80/design.aux",
"gpu" : 0,
"num_bins_x" : 512,
"num_bins_y" : 512,
"global_place_stages" : [
{"num_bins_x" : 512, "num_bins_y" : 512, "iteration" : 2000, "learning_rate" : 0.01,
→˓"wirelength" : "weighted_average", "optimizer" : "nesterov"}
],
"routability_opt_flag" : 0,
"target_density" : 1.0,
"density_weight" : 8e-5,
"random_seed" : 1000,
"scale_factor" : 1.0,
"global_place_flag" : 1,
"legalize_flag" : 1,
"detailed_place_flag" : 0,
"dtype" : "float32",
"plot_flag" : 0,
"num_threads" : 1,
"deterministic_flag" : 1,
"enable_if" : 1,
"part_name" : "xcvu3p-ffvc1517-2-e"
}

By default, the "gpu" : 0, acceleration option is disabled so the tutorial is compatible with a greater number
of compute configurations, however, this is an option with a compatible GPU (see DREAMPlaceFPGA External
Dependencies for details). For a full description of the options available, see Running DREAMPlaceFPGA.

To run DREAMPlaceFPGA with the configuration file, run the following at a terminal:

110 Chapter 13. RapidWright Tutorials

https://www.ispd.cc/contests/16/FAQ.html
https://github.com/rachelselinar/DREAMPlaceFPGA/tree/main#dependencies
https://github.com/rachelselinar/DREAMPlaceFPGA/tree/main#dependencies
https://github.com/rachelselinar/DREAMPlaceFPGA/tree/main#running

RapidWright Documentation, Release 2025.1.0-beta

python3 dreamplacefpga/Placer.py test/gnl_2_4_7_3.0_gnl_3500_03_7_80_80.json

Placement will proceed and may take a few minutes, afterwards a result new FPGA Interchange physical netlist file
will be generated here: results/design/design.phys.

4. Converting the placed design to a DCP and routing it in Vivado

Now that the design is fully placed by DREAMPlaceFPGA, we can convert it back to a DCP and open it in Vivado by
running the following command:

rapidwright PhysicalNetlistToDcp ../gnl_2_4_7_3.0_gnl_3500_03_7_80_80.netlist results/
→˓design/design.phys ../gnl_2_4_7_3.0_gnl_3500_03_7_80_80.xdc placed.dcp --out_of_
→˓context

This command will invoke RapidWright to load the logical netlist (which has not changed) and physical netlist (which
now contains the new placement information) into a placed design checkpoint (placed.dcp), readable by Vivado.
Opening this design in Vivado will show the resulting placement solution:

vivado placed.dcp &

By default, the design has all the cells locked (notice the orange colored cells that have been placed) as this is ad-
vantageous for some implementation flows used by RapidWright. However, the placement can be unlocked with
the Vivado Tcl command lock_design -unlock -level placement. Also, the command above added the
--out_of_context option to ensure that when the DCP was opened in Vivado, that it treated it as an out of context
implementation and would not automatically insert buffers on all the top level ports.

Now that the placed design is loaded in Vivado, we can route it by running the following Tcl command in Vivado:

route_design

Afterwards, we should see something like this:

13.6. Use DREAMPlaceFPGA to Place a Netlist via FPGA Interchange Format 111

RapidWright Documentation, Release 2025.1.0-beta

We can then validate the solution of the route by running:

report_route_status

Which should report something similar to this:

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 4937 :

of nets not needing routing.......... : 898 :
of internally routed nets........ : 748 :
of implicitly routed ports....... : 150 :

of routable nets..................... : 4039 :
of fully routed nets............. : 4039 :

of nets with routing errors.......... : 0 :
--- : ----------- :

The key metric to look for is the last one to ensure there are 0 nets with routing errors.

As an alternative to Vivado, we can also use RWRoute (the main router in RapidWright) to route the design–showing
how the FPGA Interchange Format allows placement and routing to happen in different open source tools on the same
design.

5. Routing the placed solution with RWRoute in RapidWright

If we return to the placed solution of our design generated by DREAMPlaceFPGA, we can take another path through
RapidWright to have it routed by its main router, RWRoute. To load the FPGA Interchange design files in RWRoute,
we need to have the .netlist and .phys files in the same directory with the same root name. We can accomplish
this by simply copying the files over and invoking RWRoute:

cp ../gnl_2_4_7_3.0_gnl_3500_03_7_80_80.netlist .
cp results/design/design.phys gnl_2_4_7_3.0_gnl_3500_03_7_80_80.phys
rapidwright RWRoute gnl_2_4_7_3.0_gnl_3500_03_7_80_80.phys rwroute_routed.dcp --
→˓nonTimingDriven --outOfContext

The last rapidwright command will accomplish 3 things:

1. Load the existing FPGA Interchange placed result from DREAMPlaceFPGA into RapidWright

2. Route the design using RWRoute (non-timing driven mode)

112 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

3. Once routing is complete, it will export a routed design checkpoint called rwroute_routed.dcp. The
--outOfContext option is added since the example design’s top level ports do not connect to IOBs and
allows Vivado to import the design without inserting buffers.

6. Validate the RWRoute routing solution in Vivado

We can open the routed DCP from RWRoute by running the following in our existing Vivado Tcl prompt:

open_checkpoint rwroute_routed.dcp

The result should look similar to the solution below:

We can similarly validate the routed solution with Vivado by running the Tcl command:

report_route_status

Which should produce an identical one as to that shown above for the Vivado routed solution:

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 4937 :

of nets not needing routing.......... : 898 :
of internally routed nets........ : 748 :
of implicitly routed ports....... : 150 :

of routable nets..................... : 4039 :
of fully routed nets............. : 4039 :

of nets with routing errors.......... : 0 :
--- : ----------- :

13.7 Polynomial Generator: Placed and Routed Circuits in Seconds

13.7.1 Background

Often, FPGA compilation runtime can be long due to the complexity and nature of problems that are solved in mapping
a user’s design onto the fabric of an FPGA. However, if we scope a user’s design to a specific domain, the compilation
process can become signficantly simplified.

This tutorial aims to provide a limited scope proof-of-concept of this idea. Consider the mathematical formula called
a polynomial. A polynomial equation consists of an expression of variables and coefficients that involves only the

13.7. Polynomial Generator: Placed and Routed Circuits in Seconds 113

https://en.wikipedia.org/wiki/Polynomial

RapidWright Documentation, Release 2025.1.0-beta

operations of addition, subtraction, multiplication and positive integer-powers of variables. Since a polynomical relies
on a finite set of mathematical operations, we can devise circuit “generators” for these operators that can be created
on-the-fly. These circuit generators (adders, subtractors, multipliers and raise-to-integer-power) have very predictable
implementation patterns on FPGA fabric and can thus be placed and internally routed very quickly.

In this application, the polynomials supported have the following attributes:

• Coefficients are integers and the first coefficient is positive

• No division operations are present

• Four mathematical operators: addition, subtraction, multiplication and positive integer powers

RapidWright has three generators to support the PolynomialGenerator that implement the four supported math-
ematical operators. A combination adder/subtractor generator for addition and subtraction and a multiplier generator
for multiplication and raise to the integer power (chaining multiple multipliers together).

13.7.2 Getting Started

1. Prerequisites

To run this tutorial, you will need:

1. RapidWright 2023.1.4 or later

2. Vivado 2023.1 or later

2. Creating a Simple Polynomial Circuit in Seconds

The interface to run the PolynomialGenerator is quite simple:

rapidwright PolynomialGenerator

Which should produce the usage message:

USAGE: <polynomial> <bit width 1 to 18> [--hand-placer]

The polynomial syntax requires explicit operators and expanded set of terms (no parethesis or factors), for example:

(𝑥− 1)(𝑥+ 2) = 𝑥2 + 𝑥− 2

should be rewritten as x^2+x-2. Coefficient also will require the explicit multiplication operator *, for example:

3𝑥2 + 𝑥− 2

should be rewritten as 3*x^2+x-2.

The mathematical generators will create placed and routed circuits up to 18 bits of width. Although the FPGA fabric
can support much larger dimensions, for simplicity we limit this proof-of-concept to 18 bits. Further work could push
this limit far beyond 18 bits.

We can generate this polynomial with 16 bit operators with the following command:

rapidwright PolynomialGenerator 3*x^2+x-2 16

With the following output (RWRoute output removed for brevity):

114 Chapter 13. RapidWright Tutorials

http://www.rapidwright.io/docs/Implementation_Basics.html#rwroute

RapidWright Documentation, Release 2025.1.0-beta

==
== Polynomial Generator ==
==

Load Device: 1.692s
Init Operators: 0.878s

Build Operator Tree: 0.183s
...
<Removed RWRoute Output>
...

Final Route: 0.474s
Write DCP: 0.455s

--
[No GC] *Total*: 3.681s

Wrote DCP: polynomial.dcp

The resulting DCP, polynomial.dcp should be generated in just a few seconds and can be examined by Vivado by
running:

vivado polynomial.dcp &

(Let’s run it in the background so we can return to the terminal later with Vivado still running).

Once loaded, we can zoom to the placed and routed circuit in clock region X3Y3, we can also highlight the individual
operators by color by running the following Tcl command in the Vivado Tcl prompt:

foreach c [get_cells] { incr i; highlight_objects -leaf_cells $c -color_index $i }

The resulting circuit should looks similar to this:

We can also run report_route_status:

report_route_status

13.7. Polynomial Generator: Placed and Routed Circuits in Seconds 115

RapidWright Documentation, Release 2025.1.0-beta

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 1775 :

of nets not needing routing.......... : 1659 :
of internally routed nets........ : 1334 :
of nets with no loads............ : 292 :
of implicitly routed ports....... : 33 :

of routable nets..................... : 116 :
of fully routed nets............. : 116 :

of nets with routing errors.......... : 0 :
--- : ----------- :

which shows the design being fully routed without any errors or violations. We can also check timing with
report_timing:

report_timing

Slack (MET) : 0.310ns (required time - arrival time)
Source: mult2_51/mult/DSP_OUTPUT_INST/CLK

(rising edge-triggered cell DSP_OUTPUT clocked by clk
→˓{rise@0.000ns fall@0.646ns period=1.291ns})
Destination: mult_34/mult/DSP_A_B_DATA_INST/A[9]

(rising edge-triggered cell DSP_A_B_DATA clocked by clk
→˓{rise@0.000ns fall@0.646ns period=1.291ns})
Path Group: clk
Path Type: Setup (Max at Slow Process Corner)
Requirement: 1.291ns (clk rise@1.291ns - clk rise@0.000ns)
Data Path Delay: 0.577ns (logic 0.207ns (35.875%) route 0.370ns (64.125%))
Logic Levels: 0
Clock Path Skew: -0.095ns (DCD - SCD + CPR)
Destination Clock Delay (DCD): 1.763ns = (3.054 - 1.291)
Source Clock Delay (SCD): 2.047ns
Clock Pessimism Removal (CPR): 0.189ns

Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
Total System Jitter (TSJ): 0.071ns
Total Input Jitter (TIJ): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns

Location Delay type Incr(ns) Path(ns) Netlist
→˓Resource(s)
--- -------------

→˓------
(clock clk rise edge) 0.000 0.000 r

0.000 0.000 r clk (IN)
net (fo=107, unset) 2.047 2.047 mult2_51/

→˓mult/CLK
DSP48E2_X12Y73 DSP_OUTPUT r mult2_51/

→˓mult/DSP_OUTPUT_INST/CLK
--- -------------

→˓------
DSP48E2_X12Y73 DSP_OUTPUT (Prop_DSP_OUTPUT_DSP48E2_CLK_P[41])

0.207 2.254 r mult2_51/
→˓mult/DSP_OUTPUT_INST/P[41]

net (fo=1, routed) 0.370 2.624 mult_34/mult/
→˓A[9]

(continues on next page)

116 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

DSP48E2_X12Y72 DSP_A_B_DATA r mult_34/mult/
→˓DSP_A_B_DATA_INST/A[9]
--- -------------

→˓------

(clock clk rise edge) 1.291 1.291 r
0.000 1.291 r clk (IN)

net (fo=107, unset) 1.763 3.054 mult_34/mult/
→˓CLK

DSP48E2_X12Y72 DSP_A_B_DATA r mult_34/mult/
→˓DSP_A_B_DATA_INST/CLK

clock pessimism 0.189 3.243
clock uncertainty -0.035 3.207

DSP48E2_X12Y72 DSP_A_B_DATA (Setup_DSP_A_B_DATA_DSP48E2_CLK_A[9])
-0.273 2.934 mult_34/mult/

→˓DSP_A_B_DATA_INST

required time 2.934
arrival time -2.624

slack 0.310

By default, the clock constraint in the polynomial design is set to 775MHz, or the highest specification of the DSP in
speed grade 2 UltraScale+ devices. As can be seen above, this circuit has been placed and routed successfully and has
margin to spare to run at this frequency. Of course, as polynomials grow larger, this frequency may be impacted, but
it strives to run at the spec of the device.

We can repeat this process for a more complex polynomial in the next step–keep your Vivado instance open so we can
reload the next iteration more quickly.

3. More Complex Polynomial and Inspection with the RapidWright Hand Placer

For the next step, let’s consider a more complex polynomial:

8𝑦4 + 43𝑦𝑥3 + 7𝑥2 − 14

rapidwright PolynomialGenerator 8*y^4+43*y*x^3+7*x^2-14 18 --hand-placer

This will generate a multi-variable polynomial with inputs x and y and before the design is routed, will invoke the
RapidWright hand placer that will allow the placement of the polynomial to be inspected by the user. After running
the command, a window should pop up that looks similar to this:

13.7. Polynomial Generator: Placed and Routed Circuits in Seconds 117

RapidWright Documentation, Release 2025.1.0-beta

This is a simplified device model view in RapidWright of the targeted device with the operator moduled overlayed
in green and orange. The user can use a mouse scroll wheel up to zoom in (or CTRL + -) and down to zoom out
(or CTRL + =). Alternatively, there are toolbar buttons to control zoom, or zoom to a selected module (which can be
selected on the right window pane list).

118 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

After zooming in, try selecting one of the module instances by moving the mouse over one of the shapes, click and
hold the left mouse button and move the block around the fabric as shown in the animation below:

13.7. Polynomial Generator: Placed and Routed Circuits in Seconds 119

RapidWright Documentation, Release 2025.1.0-beta

Notice that the color of the block changes color based on what area of the fabric is located. Green means a valid
placement location, red is invalid and orange is valid although its footprint overlaps with another module. Also notice
that when a module instance is being drag selected, it has translucent lines to other module instances. The thickness of
these lines is determined by the number of net connections between those two module instances. In this fashion, the
modules can be placed or re-placed by hand.

Try moving the add18_0 block away from the rest of the module instances onto another valid location (where the
block turns green) as shown in the image below:

120 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

If you make a mistake, the hand placer also has an Undo/Redo stack so CTRL + Z will undo the last movement and
CTRL + SHIFT + Z will redo a movement. When completed, the window can be closed and the new placement is
automatically applied.

Once the window is closed, the PolynomialGenerator will automatically resume and generate the
polynomial.dcp. We can then use refresh_design in Vivado’s Tcl prompt to re-load the DCP:

refresh_design
set i 0; foreach c [get_cells] { incr i; highlight_objects -leaf_cells $c -color_
→˓index $i }

After we zoom in, we should see a very similar floorplan layout to the one chosen interactively in the hand placer:

13.7. Polynomial Generator: Placed and Routed Circuits in Seconds 121

RapidWright Documentation, Release 2025.1.0-beta

Notice in the snapshot above, the add18_0 module instance is in the top right of the screen, in step with where we
placed it in the hand placer.

Again, we can repeat the Vivado Tcl commands report_route_status and report_timing to validate the
result. Although we do not replicate the output here, the design should be valid and meet timing as in step 2.

At this point you are invited to try different polynomials of your own and try making your own placements in the hand
placer to explore the several possibilities available to you in this proof-of-concept.

13.8 Inserting and Routing a Debug Core As An ECO

13.8.1 Context

An Engineering Change Order, or ECO, is a method that allows small modifications to be made to an existing design
without needing to reimplement it from scratch. In doing so, by preserving as much of the existing implementation as
possible and only making incremental changes, ECOs can save on compilation runtime.

In this tutorial, we will demonstrate how simple trace-buffer(s) can be rapidly inserted into an existing place-and-
routed design and then unintrusively connected to signals of interest to aid debugging.

This trace-buffer consists of a FIFO36 primitive configured as a ring-buffer that continuously samples its 36-bit data
input on each clock cycle. Once the clock is stopped, this trace-buffer will contain a 1024 cycle history of the activity
on those inputs. Unloading the contents of this trace-buffer is assumed to be realized using the Readback Capture
process, which leverages built-in configuration resources (as opposed to the user-programmable resources) to trans-
parently extract the contents of the user state including the contents of block RAMs that host our FIFO36.

122 Chapter 13. RapidWright Tutorials

https://download.amd.com/docnav/documents/XAPP1230.pdf

RapidWright Documentation, Release 2025.1.0-beta

Even though this particular debug core is simplistic, the techniques described in this tutorial can be extended to more
complex cores. An overview of the sections that follow is shown below:

13.8.2 Getting Started

1. Prerequisites

To run this tutorial, you will need:

1. Java 11 or later

2. Vivado 2023.1 or later

3. git

In this tutorial, RapidWright will be used as a precompiled library downloaded from a Java package distribution site
(Maven Central).

2. Setup

Start by cloning and entering the tutorial repository:

git clone https://github.com/eddieh-xlnx/eco_insert_route_debug
cd eco_insert_route_debug

This repository contains:

• The Gradle Wrapper (gradlew) which is a script for launching the Gradle Build Tool.

• Gradle settings (build.gradle) for this project, indicating what its dependencies (e.g. RapidWright) are,
where to download them from, as well as the location of source files.

• Java sources used in this tutorial (e.g. src/EcoInsertRouteDebug.java).

• Example Vivado Design Checkpoints (DCPs) for use in this tutorial.

13.8. Inserting and Routing a Debug Core As An ECO 123

https://git-scm.com/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://gradle.org/

RapidWright Documentation, Release 2025.1.0-beta

The example design that we will be using in this tutorial is an open source RISC-V processor core by the name of
Berkeley Out-of-Order Machine that has been placed-and-routed onto a Xilinx UltraScale+ XCVU3P device. The
configuration used (MediumBoomConfig) resulted in a design that occupies around 36,000 LUTs.

This design can be examined by opening it up in Vivado:

vivado files/boom_medium_routed.dcp

Here, the placed and routed result is shown:

Note that only the upper-center part of the device is occupied by the user design, leaving a significant amount of free
resources to aid debug.

Next, we can examine our simplified debug core by also opening it with Vivado. This debug core was generated from
an RTL description and synthesized out-of-context, placed, and routed as a standard Vivado project. An out-of-context
synthesis run refers to compilation of a sub-module that is intended to be integrated with a top-level design at some
future time. In such a flow, for example, any top-level ports will not have I/O buffer cells inserted. Run the following
command using the Tcl Console located in the lower portion of the Vivado GUI:

open_checkpoint files/fifo36_routed.dcp

A new window will appear with this design. Although it may look like the device is empty at first, navigating to “Leaf
Cells” in the “Netlist” tab in the left-hand side of the Vivado GUI and selecting the FIFO36E2_inst element will
zoom to the FIFO36 primitive, which is located in the lower-left corner of the device:

124 Chapter 13. RapidWright Tutorials

https://docs.boom-core.org/en/latest/sections/intro-overview/boom.html
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Out-of-Context-Synthesis
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Out-of-Context-Synthesis

RapidWright Documentation, Release 2025.1.0-beta

Note that this debug core contains a number of unconnected inputs (specifically, its write clock and data inputs which
are to be connected later to the design under debug) as well as control inputs (e.g. write enable, sleep, etc.) that are
pre-routed to VCC or GND as appropriate. In particular, GND is supplied from LUT resources situated to the right of
the block RAM primitive.

Once you are satisfied with the state of both designs, please close both Vivado windows.

In the following sections, we will demonstrate how to use RapidWright to combine both the base design and the debug
core into a single design in a way that preserves the placement and routing of both. Additionally, we show how to
incrementally connect and re-route the signals of interest without disrupting this placement and routing, as well as
how to instantiate and relocate multiple debug cores.

3. Inserting the debug core into a place-and-routed design

RapidWright will be used to merge both the base design and the debug core into a single design without losing any of
its existing placement and routing. The Java code to achieve this is available at src/EcoInsertRouteDebug.
java, the relevant parts of which is duplicated below:

class EcoInsertRouteDebug {
public static void main(String[] args) {

Design baseDesign = Design.readCheckpoint("files/boom_medium_routed.dcp");
Design debugDesign = Design.readCheckpoint("files/fifo36_routed.dcp");

boolean unrouteStaticNets = false;
(continues on next page)

13.8. Inserting and Routing a Debug Core As An ECO 125

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Module debugModule = new Module(debug, unrouteStaticNets);

ModuleInst debug1ModuleInst = baseDesign.createModuleInst("debug1",
→˓debugModule);

debug1ModuleInst.placeOnOriginalAnchor();

// << commented out code omitted >>

baseDesign.writeCheckpoint("boom_medium_debug.dcp");
}

}

This code describes a Java class with a single “main” method that serves as its entrypoint when executed.

The first two Design.readCheckpoint() calls loads the two DCPs into RapidWright’s data structures. Next,
the design containing the debug core is converted into a RapidWright Module object representing a “template” that
can be copied and moved into other designs. This Module object is then instantiated inside the base design (under a
level of hierarchy named debug1) and placed at its original location. Lastly, the newly merged design is written to
disk.

Compile and run this source code with the following command that invokes the Gradle wrapper, and then open Vivado
(in the background) to examine the generated DCP:

./gradlew -Dmain=EcoInsertRouteDebug :run
vivado boom_medium_debug.dcp &

Once again, it is not immediately obvious that the debug core has been merged in with the base design; select “debug1
> Leaf Cells -> FIFO36E2_inst” from the left-hand “Netlist” tab to verify its existence and location. The following
image shows the result after zooming out six steps:

126 Chapter 13. RapidWright Tutorials

https://www.rapidwright.io/docs/RapidWright_Overview.html#module

RapidWright Documentation, Release 2025.1.0-beta

To verify the state of the design,

report_route_status

can be run in the Vivado Tcl Console to give the following result:

report_route_status
Design Route Status

: # nets :
--- : ----------- :
of logical nets.......................... : 87712 :

of nets not needing routing.......... : 33882 :
of internally routed nets........ : 30546 :
of nets with no loads............ : 3299 :

of routable nets..................... : 53830 :
of fully routed nets............. : 53830 :

of nets with routing errors.......... : 37 :
of nets with no driver........... : 37 :

--- : ----------- :

Nets with Routing Errors: (only the first 10 nets are listed)
debug1/DIN[0]
debug1/DIN[10]
debug1/DIN[11]

(continues on next page)

13.8. Inserting and Routing a Debug Core As An ECO 127

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

debug1/DIN[12]
debug1/DIN[13]
debug1/DIN[14]
debug1/DIN[15]
debug1/DIN[16]
debug1/DIN[17]
debug1/DIN[18]

This output is reporting that 37 nets have no driver — these refer to the unconnected 36 data inputs plus its accompa-
nying clock signal.

Please keep Vivado open as we will be reusing it in the next section.

4. Connecting the debug core

Now that the debug core has been inserted into the base design, the next step is to use RapidWright to connect and
route the signals of interest from the design under debug into the debug core for tracing.

Return to src/EcoInsertRouteDebug.java and uncomment the commented lines of code to get:

class EcoInsertRouteDebug {
public static void main(String[] args) {

Design baseDesign = Design.readCheckpoint("files/boom_medium_routed.dcp");
Design debugDesign = Design.readCheckpoint("files/fifo36_routed.dcp");

boolean unrouteStaticNets = false;
Module debugModule = new Module(debugDesign, unrouteStaticNets);

ModuleInst debug1ModuleInst = baseDesign.createModuleInst("debug1",
→˓debugModule);

debug1ModuleInst.placeOnOriginalAnchor();

List<ModuleInst> debugInsts = new ArrayList();
debugInsts.add(debug1ModuleInst);

String clkName = "clock_uncore_clock_IBUF_BUFG";
List<String> netNames = new ArrayList();
for (int i = 0; i < 36; i++) {

netNames.add("system/tile_prci_domain/tile_reset_domain_tile/core/csr/s1_
→˓pc_reg[" + i + "]");

}
EDIFNetlist baseNetlist = baseDesign.getNetlist();
List<String> netPinList = buildNetPinList(baseNetlist, clkName, netNames,

→˓debugInsts);
ECOTools.connectNet(baseDesign, netPinList);

PartialRouter.routeDesignPartialNonTimingDriven(baseDesign, null);

baseDesign.writeCheckpoint("boom_medium_debug.dcp");
}

}

These new lines of code are responsible for connecting nets from the base design to the debug core. This includes spec-
ifying the base design’s global clock net (named clock_uncore_clock_IBUF_BUFG) that will form the write
clock of our debug core, and collecting a list of all program counter (PC) nets in the RISC-V core (nets system/
tile_prci_domain/tile_reset_domain_tile/core/csr/s1_pc_reg[35:0]) to be connected to

128 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

the debug core’s data inputs.

The mapping of the each net (captured in the netPinList member variable) to its debug core input is done in
the buildNetPinList() method, which is not shown. ECOTools.connectNet() (a RapidWright method
modelled on Vivado’s connect_net Tcl API) is then provided with this mapping and connections are made through
the design hierarchy as needed.

Lastly, PartialRouter.routeDesignPartialNonTimingDriven() calls a variant of RapidWright’s
router (named RWRoute) that will incrementally route only those newly connected pins using just unoccupied re-
sources, without disrupting any part of the existing place and route solution.

Re-compile and execute the modified source code by running from the terminal

./gradlew -Dmain=EcoInsertRouteDebug :run

again. Once complete, reload the design in Vivado using the following Tcl command:

refresh_design

which will reload boom_medium_debug.dcp from disk to give the following output:

Notice that there now exists routing (green lines) connecting the design under debug in the upper portion of the device
with the debug core in the lower left corner. Running report_route_status now shows that the design contains
no routing errors:

Design Route Status
: # nets :

--- : ----------- :
of logical nets.......................... : 87675 :

(continues on next page)

13.8. Inserting and Routing a Debug Core As An ECO 129

http://www.rapidwright.io/docs/Implementation_Basics.html#rwroute
http://www.rapidwright.io/docs/Implementation_Basics.html#rwroute

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

of nets not needing routing.......... : 33814 :
of internally routed nets........ : 30515 :
of nets with no loads............ : 3299 :

of routable nets..................... : 53861 :
of fully routed nets............. : 53861 :

of nets with routing errors.......... : 0 :
--- : ----------- :

5. Relocating the debug core

During the original creation of the debug core, the placer decided to locate it in the bottom left corner of the device.
Given its distance from the design under debug, routing delays caused by connecting any signals of interest to this
debug core may cause an undesirable performance impact. RapidWright’s ModuleInst functionality allows the
debug core to be relocated to legal positions closer to the design under debug. For the scope of this tutorial, we will
visually identify a new location for placing the debug core but it should be noted that automated methods also exist.

Using Vivado (which should still have the last boom_medium_debug.dcp open) it can be observed that there are
free block RAM resources to the left and right of the design under debug which would represent better locations for
any debug core.

Select and zoom into the following site:

select_objects [get_sites RAMB36_X7Y34]

Note that this site is unoccupied, and that LUT resources to the right of this RAM resource are also unoccupied as they
are necessary to host a number of GND sources.

Edit src/EcoInsertRouteDebug.java again, comment out the placeOnOriginalAnchor() call and
instead place the debug core at this new location, as shown below:

ModuleInst debug1ModuleInst = baseDesign.createModuleInst("debug1", debugModule);
// debug1ModuleInst.placeOnOriginalAnchor(); // Comment out this line

Device device = baseDesign.getDevice(); // Add this and the following line
debug1ModuleInst.place(device.getSite("RAMB36_X7Y34"));

List<ModuleInst> debugInsts = new ArrayList();

Re-compile and execute the modified source code by calling

./gradlew -Dmain=EcoInsertRouteDebug :run

and execute

refresh_design

inside Vivado to view this latest result. Ensure that this result is also legal with a call to

report_route_status

6. Inserting and routing multiple debug cores

A single debug core (in this example, supporting the tracing of up to 36 signals) may not be sufficient. Besides being
able to relocate a single ModuleInst, RapidWright also supports the creation of multiple instantiations of the same

130 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

Module object. Incidentally, the program counter of the BOOM processor is 40-bits wide thus requiring a second
debug core for full visibility.

Edit src/EcoInsertRouteDebug.java to create and place a second instantiation, then connect that up, so that
the main method looks like the following:

public static void main(String[] args) {
Design baseDesign = Design.readCheckpoint("files/boom_medium_routed.dcp");
Design debugDesign = Design.readCheckpoint("files/fifo36_routed.dcp");

boolean unrouteStaticNets = false;
Module debugModule = new Module(debugDesign, unrouteStaticNets);

ModuleInst debug1ModuleInst = baseDesign.createModuleInst("debug1", debugModule);
// debug1ModuleInst.placeOnOriginalAnchor();
Device device = baseDesign.getDevice();
debug1ModuleInst.place(device.getSite("RAMB36_X7Y34"));

// Second instantiation and placement into new site
// >>>>>
ModuleInst debug2ModuleInst = baseDesign.createModuleInst("debug2", debugModule);
debug2ModuleInst.place(device.getSite("RAMB36_X4Y41"));
// <<<<<

List<ModuleInst> debugInsts = new ArrayList();
debugInsts.add(debug1ModuleInst);
// Addition of second debug core to list of instances
// >>>>>
debugInsts.add(debug2ModuleInst);
// <<<<<

String clkName = "clock_uncore_clock_IBUF_BUFG";
List<String> netNames = new ArrayList();
// Increase PC from 36 bits to full 40 bits
// >>>>>
for (int i = 0; i < /*36*/ 40; i++) {
// <<<<<

netNames.add("system/tile_prci_domain/tile_reset_domain_tile/core/csr/s1_pc_
→˓reg[" + i + "]");

}
EDIFNetlist baseNetlist = baseDesign.getNetlist();
List<String> netPinList = buildNetPinList(baseNetlist, clkName, netNames,

→˓debugInsts);
ECOTools.connectNet(baseDesign, netPinList);

PartialRouter.routeDesignPartialNonTimingDriven(baseDesign, null);

baseDesign.writeCheckpoint("boom_medium_debug.dcp");
}

Re-compile and execute the modified source code by calling

./gradlew -Dmain=EcoInsertRouteDebug :run

and execute

refresh_design

inside Vivado to view this latest result. Again, verify the result by calling

13.8. Inserting and Routing a Debug Core As An ECO 131

RapidWright Documentation, Release 2025.1.0-beta

report_route_status

and close Vivado once you are satisfied it is legal.

7. Inserting and routing debug cores without leaving Vivado

It is possible to adapt the these techniques into a standalone application to be run directly from and integrated with Vi-
vado. The source code for this standalone application is located at src/EcoInsertRouteDebugApp.java and
differs from that in the prior section by accepting two command-line arguments corresponding to the input and output
DCPs to be processed, and to accept signals for tracing as marked inside the Vivado GUI. To build this standalone
application, execute the following command:

./gradlew -Dmain=EcoInsertRouteDebugApp :fatJar

to build an all-in-one “JAR” (Java Archive) file containing all its compiled code and dependencies.

Next, create a new Tcl source file named eco_insert_route_debug.tcl with the following contents:

Write the design
write_checkpoint -force eco_input.dcp
write_edif -force eco_input.edf
Execute the EcoInsertRouteDebugApp.jar and display its output upon exit
puts [exec java -jar EcoInsertRouteDebugApp.jar eco_input.dcp eco_output.dcp]
Close the old checkpoint
close_design
Re-open the modified checkpoint
open_checkpoint eco_output.dcp
Check design is fully routed
report_route_status
Find all signals marked for debug and display them in a new GUI tab
show_objects -name find_1 [get_nets -hierarchical -top_net_of_hierarchical_group -
→˓filter { MARK_DEBUG == "TRUE" }]

Lastly, launch Vivado with our original base design once again:

vivado files/boom_medium_routed.dcp

We will use the “Mark Debug” feature within the Vivado GUI to select the signals to be connected to the de-
bug core. From the “Netlist” tab in the left hand side, open up the top-level “Nets” folder and right click on the
tl_slave_0_a_bits_data_OBUF (64) entry and select “Mark Debug” as shown below:

132 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

From the Tcl Console, execute the previously created script in the following manner:

source eco_insert_route_debug.tcl

As the comments in the Tcl script indicate, this causes the base design (with signals marked for debug) to be written
to disk, operated on by the EcoInsertRouteDebugApp and then re-opened in Vivado, all without leaving the
Vivado interface. Verify that all traced nets are indeed fully routed.

8. Closing Comments

In this tutorial, we’ve demonstrated how RapidWright can be used as part of a custom application that is capable of
inserting, relocating, connecting and routing one or more debug cores (trace buffers) without disrupting the existing
placement and routing of the base design.

More specifically, we’ve demonstrated how RapidWright’s Module capabilities can be used to insert and relocate
designs within other designs, how ECOTools can be used to connect nets and pins from such merged designs, and
how PartialRouter can be used to incrementally route just the unrouted pins.

Beyond those, RapidWright contains many more capabilities – for example, ECOTools supports the ability to also
disconnect pins from nets, remove cells, create new nets and cells, etc. Pre-implemented Modules is a separate tutorial
that discusses Module-s in more details, in which a manual HandPlacer (with GUI) and automated simulated-
annealing based BlockPlacer are both described and could be adapted to ease the process for finding module
placements.

13.8. Inserting and Routing a Debug Core As An ECO 133

https://www.rapidwright.io/docs/PreImplemented_Modules_Part_I.html

RapidWright Documentation, Release 2025.1.0-beta

13.9 Create Placed and Routed DCP to Cross SLR

What You’ll Need to Get Started:

• RapidWright 2023.1 or later

• Vivado 2018.2 or later

One of the example programs that is provided with RapidWright solves a challenging problem on UltraScale+ devices
(this approach is not valid for Series 7 or UltraScale parts). Crossing super logic region (SLR) boundaries at high
speed can prove quite difficult in conventional Vivado flows. The hardware provides dedicated TX/RX flip flops in
Laguna sites to enable the creation of paths with very short delay but experience two significant problems:

1. The dedicated super long lines (SLLs) that connect TX and RX Laguna flip flop pairs are often sensitive to hold
time violations due to the higher multi-die variability.

2. Paths crossing the SLR boundary are taxed with an additional delay penality called “Inter-SLR Compensation”
(ISC). This penalty increases the calculated delay and reduces it potential for high speed.

Fig. 1: Example Vivado tooltip window describing the Inter-SLR Compensation delay penalty

In RapidWright, we have created a parametrized, stand-alone application that can automatically generate a placed and
routed DCP from scratch that implements a circuit that eliminates and minimizes the two challenges mentioned above.
First, it creates a netlist with pairs of flops that are connected and placed and routed across SLR crossings using the
dedicated Laguna TX/RX flip flop sites. Next, it custom routes the clock (the circuit has its own BUFGCE) such that it
can individually tune the leaf clock buffers (LCBs) for each direction on each side of the SLR. By using the LCBs, the
hold time in the first challenge mentioned above is eliminated. To minimize the ISC penalty, a clock root is generated
for each clock region (CR) that contains an SLR crossing.

13.9.1 Steps to Run

1. Ensure you have RapidWright correctly setup and/or installed. See the Getting Started page for details.

2. Run the command below to print available options to parameterize the SLR crossing output

134 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

rapidwright SLRCrosserGenerator -h

Example output below:

==
== SLR Crossing DCP Generator ==
==
This RapidWright program creates a placed and routed DCP that can be
imported into UltraScale+ designs to aid in high speed SLR crossings. See
RapidWright documentation for more information.

Option Description
------ -----------
-?, -h Print Help
-a [String: Clk input net name] (default: clk_in)
-b [String: Clock BUFGCE site name] (default: BUFGCE_X0Y218)
-c [String: Clk net name] (default: clk)
-d [String: Design Name] (default: slr_crosser)
-i [String: Input bus name prefix] (default: input)
-l [String: Comma separated list of (default: LAGUNA_X2Y120)

Laguna sites for each SLR crossing]
-n [String: North bus name suffix] (default: _north)
-o [String: Output DCP File Name] (default: slr_crosser.dcp)
-p [String: UltraScale+ Part Name] (default: xcvu9p-flgc2104-2-i)
-q [String: Output bus name prefix] (default: output)
-r [String: INT clk Laguna RX flops] (default: GCLK_B_0_1)
-s [String: South bus name suffix] (default: _south)
-t [String: INT clk Laguna TX flops] (default: GCLK_B_0_0)
-u [String: Clk output net name] (default: clk_out)
-v [Boolean: Print verbose output] (default: true)
-w [Integer: SLR crossing bus width] (default: 512)
-x [Double: Clk period constraint (ns)] (default: 1.538)
-y [String: BUFGCE cell instance name] (default: BUFGCE_inst)
-z [Boolean: Use common centroid] (default: false)

3. A default scenario of a single bi-directional crossing of 512 bits is generated at the LAGUNA_X2Y120 site on
a VU9P part if no options are provided. The DCP is generated in the current working directory with the name
slr_crosser.dcp unless the -o option is specified.

rapidwright SLRCrosserGenerator

==
== SLRCrosserGenerator ==
==

Init: 4.787s
Create Netlist: 0.123s

Place SLR Crossings: 0.121s
Custom Clock Route: 3.756s

Route VCC/GND: 0.079s
Write EDIF: 0.148s

Writing XDEF Header: 0.090s
Writing XDEF Placement: 0.213s
Writing XDEF Routing: 0.404s

Writing XDEF Finalizing: 0.079s
Writing XDC: 0.039s

--
[No GC] *Total*: 9.839s

(continues on next page)

13.9. Create Placed and Routed DCP to Cross SLR 135

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Wrote final DCP: /home/user/slr_crosser.dcp

4. Open the DCP using Vivado to view the design. It should look similar to the annotated screenshot below:

Fig. 2: Vivado Screenshot with bubble annotations of a single, bi-direction 512-bit SLR crossing circuit.

5. You can also unzip the DCP (treating it like an ordinary ZIP file) and inside you’ll find Verilog and VHDL stubs
that can be imported into RTL designs for black box inclusion. Example output below:

$ unzip slr_crosser.dcp
Archive: slr_crosser.dcp

inflating: slr_crosser.edf
inflating: slr_crosser.xdef
inflating: slr_crosser_late.xdc
inflating: slr_crosser_stub.v
inflating: slr_crosser_stub.vhdl
inflating: dcp.xml

$ cat slr_crosser_stub.v
// This file was generated by RapidWright 2018.2.0.

// This empty module with port declaration file causes synthesis tools to infer a
→˓black box for IP.
// Please paste the declaration into a Verilog source file or add the file as an
→˓additional source.
module slr_crosser(clk_in, clk_out, input0_north, input0_south, output0_north,
→˓output0_south);
input clk_in;
output clk_out;
input [511:0]input0_north;

(continues on next page)

136 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

input [511:0]input0_south;
output [511:0]output0_north;
output [511:0]output0_south;

endmodule
$

Optionally, you can open the DCP in Vivado and write out the netlist as EDIF, Verilog or VHDL to be packaged as an
IP. The DCP can then be dropped into the IP cache later.

6. As one additional example, the generator is capable of using every SLL in the device. To generate such a DCP
for a VU9P device, run:

rapidwright SLRCrosserGenerator -w 720 -l LAGUNA_X0Y120,LAGUNA_X2Y120,LAGUNA_X4Y120,
→˓LAGUNA_X6Y120,LAGUNA_X8Y120,LAGUNA_X10Y120,LAGUNA_X12Y120,LAGUNA_X14Y120,LAGUNA_
→˓X16Y120,LAGUNA_X18Y120,LAGUNA_X20Y120,LAGUNA_X22Y120,LAGUNA_X0Y360,LAGUNA_X2Y360,
→˓LAGUNA_X4Y360,LAGUNA_X6Y360,LAGUNA_X8Y360,LAGUNA_X10Y360,LAGUNA_X12Y360,LAGUNA_
→˓X14Y360,LAGUNA_X16Y360,LAGUNA_X18Y360,LAGUNA_X20Y360,LAGUNA_X22Y360

The resultant DCP should look similar to the following in Vivado:

Fig. 3: Vivado Screenshot of all SLLs being used at potentially a 760MHz for a speed grade 2 device.

13.9. Create Placed and Routed DCP to Cross SLR 137

RapidWright Documentation, Release 2025.1.0-beta

13.10 Build an IP Integrator Design with Pre-Implemented Blocks

Note: This tutorial has been retired and efforts are being made to replace it replace/refresh it with a more stable
example.

13.11 RapidWright PipelineGenerator Example

Generates a placed and routed circuit of flops that form a pipelined bus (think 2-D array of flops) having parameteriz-
able spacing between pipeline stages. The generated .dcp file can be loaded into Vivado to view.

13.11.1 Input Parameters

• Width (bits)

• Depth (pipeline stages)

• Distance (tiles)

• Direction (horizontal or vertical)

13.11.2 Background

The selected device is a Xilinx VU3P (UltraScale+ device).

Figure 1-3 on pg. 8 of user guide UG574 shows the FFs contained within an UltraScale+ CLB (similar to UltraScale
devices). Please see: https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf for more
description.

138 Chapter 13. RapidWright Tutorials

https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf

RapidWright Documentation, Release 2025.1.0-beta

In this example, the PipelineGenerator places flops (instantiated as FDRE) by specifying slice locations and the indi-
vidual FF BEL sites that are within each slice. These are grouped in pairs and referenced by a letter. Please note that
each letter contains a pair of FFs.

13.11. RapidWright PipelineGenerator Example 139

RapidWright Documentation, Release 2025.1.0-beta

13.11.3 Steps to Run

1. Ensure you are familiar with the RapidWright directories and have an IDE project created for RapidWright.
Using an IDE such as IntelliJ or Eclipse is highly recommended for exercises in this tutorial for easy compilation
and for help with the RapidWright libraries and functions. While we don’t provide any IDE “how to” steps
within this tutorial, if you do have questions please feel free to ask.

2. If you need to recompile the code, run: ./gradlew compileJava from within your
“<workspace_dir>/RapidWright” subdirectory. Alternatively, build this example using your IDE.

3. After compiling, run: rapidwright PipelineGenerator. This will generate an output called
“pipeline.dcp”, containing the placed and routed circuit design.

4. To see a list of available input options specify “-h” as an argument. Note: the horizontal direction is assigned
within the source code, but it can alternatively be changed to vertical within main(). The source code for this ex-
ample is located in: <workspace_dir>/RapidWright/com/xilinx/rapidwright/examples/
PipelineGenerator.java.

==
== Pipeline Generator ==
==
This RapidWright program creates an example pipelined bus as a placed and routed DCP.
See the RapidWright documentation for more information.

Option Description
------ -----------
-?, -h Print Help
-c [String: Clk net name] (default: clk)
-d [String: Design Name] (default: pipeline)
-l [Integer: distance] (default: 10)
-m [Integer: depth] (default: 3)
-n [Integer: width] (default: 10)
-o [String: Output DCP File Name] (default: pipeline.dcp)
-p [String: Ultrascale/UltraScale+ (default: xcvu3p-ffvc1517-2-e)
Part Name]
-s [String: Lower left slice to be (default: SLICE_X42Y70)
used for pipeline]
-v [Boolean: Print verbose output] (default: true)
-x [Double: Clk period constraint (ns)] (default: 1.291)

13.11.4 Example Design

• Width = 10 bits

• Depth = 3 pipeline stages

• Distance = 10 tiles

• Direction = horizontal

140 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

13.11. RapidWright PipelineGenerator Example 141

RapidWright Documentation, Release 2025.1.0-beta

The above screenshot show the device view, zoomed in on the placed and routed circuit. This circuit consists of three
pairs of slices, using the <horizontal> spacing distance of <10> tiles.

Although each CLB FF letter site contains a pair of flops, as described above, this example only makes use of the first
flop in each pair, as a demo. This means that the lower slice for each of the pairs uses eight flops, and the upper slice
uses two flops to satisfy the <width> request of ten bits. This was done intentionally towards setting up an example
that could be easily modified to use both of the flops in the pair. The screenshot below shows a zoomed in view of the
lower slice.

142 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

Please refer to the example code for more implementation details. The Java source code for this
example is located in: <workspace_dir>/RapidWright/com/xilinx/rapidwright/examples/
PipelineGenerator.java.

This example was designed to illustrate basic functions, and please feel free to modify this example to experiment
building other implementations.

13.11.5 Additional Exercises

1. Try modifying the PipelineGenerator to use all 16 flip flops in an UltraScale slice, this will lead to a more
compact usage of CLBs at the potential expense of greater routing congestion.

13.11. RapidWright PipelineGenerator Example 143

RapidWright Documentation, Release 2025.1.0-beta

Hint: When using all sixteen flops or designs with higher bit widths, the minimum distance should be at least 10 tiles
for routing.

2. This example of a PipelineGenerator is ideal for creating a long haul pipelined bus connection at high speed.
This would be useful in connecting two modules physically distant on a device but need to communicate at high
speed. Currently, the implementation can only pipeline in a single plane (horizontal or vertical). Modify the
example such that it can pipeline both vertically and horizontally.

144 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

13.12 RapidWright PipelineGeneratorWithRouting Example

As part of the introduction of our new RapidWright timing library, we have extended the Pipeline Generator tutorial to
demonstrate how to use our timing library, or at least how one might call our new timing library towards implementing
a timing-driven router.

13.12.1 Background

Please see our FPT‘19 paper, "An Open-source Lightweight Timing Model for RapidWright"
(Presentation) for background details on our RapidWright Timing Model. Our model abstracts groups of low
level wires and MUXes into an abstraction that we call timing groups (TGs).

Please note this tutorial does not cover some deeper background details, and it assumes a basic knowledge of routing
concepts and the routing resources available within Xilinx devices. For more background, the tutorial library contains
a separate tutorial dedicated on routing, including implementation examples that are depth-based (non-timing driven).
That tutorial includes some device model details specific to RapidWright. RapidWright also provides an even more
substantial depth-based router implementation within its source library (at least more substantial than the dedicated
tutorial).

In this tutorial we further model our router cost function to compare the net delays estimated for different paths
as a component of the cost. However, our cost function, algorithm, and overall implementation are for illustration
purposes and have not been optimized for runtime performance or modular design. Our goal here is merely to present
an example of using our timing library for exploring potential routing resources.

This tutorial and router method are provided in Java, as we are leveraging the circuit generator from the earlier Pipeline
Generator tutorial. In the Pipeline Generator tutorial, we describe a circuit generator that instantiates and connects a
2-D array of flip flops, which represent an n-bit wide bus pipelined over multiple clock cycles. For this tutorial, we
consider and generate a one-bit wide bus over two cycles (essentially we connect only a pair of flops). The more
interesting aspect is that our pipeline generator has parameters for placement allowing the user to select the distance
between flops and a relative direction.

13.12.2 Steps to Run

1. Ensure you are familiar with the RapidWright directories and have an IDE project created for RapidWright.
Using an IDE such as IntelliJ or Eclipse is highly recommended for exercises in this tutorial for easy compilation
and for help with the RapidWright libraries and functions.

2. If you need to recompile the code, run:

./gradlew compileJava

from within your RapidWright directory. Alternatively, build this example using your IDE.

3. After compiling, run:

rapidwright PipelineGeneratorWithRouting

This will generate an output called pipeline.dcp, containing the placed and routed circuit design.

4. To see a list of available input options specify “-h” as an argument. Note: the source code for this example is
located in: RapidWright/src/com/xilinx/rapidwright/examples/PipelineGeneratorWithRouting.java.

13.12. RapidWright PipelineGeneratorWithRouting Example 145

https://github.com/Xilinx/RapidWright/blob/master/src/com/xilinx/rapidwright/examples/PipelineGeneratorWithRouting.java

RapidWright Documentation, Release 2025.1.0-beta

13.12.3 Example Design

• Width = 1 bit

• Depth = 2 pipeline stages

• DistanceY = 16 tiles

• DistanceX = 4 tiles

The logical view of the circuit as a Vivado schematic is shown below (pair of flops).

The selected device is a Xilinx VU3P (UltraScale+ device). The zoomed out device view in Vivado is shown below,
with an example placed and routed circuit in the lower left corner.

146 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

As discussed, we specify parameters for the distance between flops, and we do this by giving a distanceX and a
distanceY change in coordinates. The example shown here has a diagonal direction. The screenshot from Vivado
below shows a routed implementation having multiple wires shown below in white, connecting from the first flop
(lower left) to the second flop (upper right).

13.12. RapidWright PipelineGeneratorWithRouting Example 147

RapidWright Documentation, Release 2025.1.0-beta

Please refer to the example code for more implementation details.

13.12.4 Router Method

In our example router implementation, we have a queue, where we store and are building up candidate next hop
locations as well as a set of candidate solutions. We have a main while loop that iterates extending each candidate
closer to the target. We terminate the loop when we have either: (a) exhausted the candidate next hops as not feasible
or (b) when the watchdog timer expires. The watchdog timer is initialized to 500,000 and counts down.

Within the while loop:

1. We get the distance in the horizontal and vertical dimensions to our target location.

2. We record that we have visited the current TG location.

3. If we have reached our target location, then we add the solution to our list of candidate solutions.

4. Else, we call the cost function.

Within the cost function:

1. We get an array of all potential next hop TGs from our current TG location.

2. We consider distance and direction. We choose the direction in that we have furthest to go. We choose
the distance by selecting from a set of bands: SAME, NEAR, MID, or FAR. These are defined within the
code.

3. We use the filter function with distance and direction band to filter our array of potential next hops to the
relevant distance and direction.

4. We compute an artificial cost that has a component for the distance remaining to the target and also the
delay so far.

5. For each potential next hop TG:

a. We store the delays within a table.

b. We keep track of the history of moving from the current TG to the next hop TG.

c. We add the next hop TG to the queue.

After while loop terminates:

1. We select the solution with lowest delay cost.

13.12.5 Interpreting Program Output

We print the TGs for the chosen solution. This printout includes the nodes included by each TG and the wires included
by each node. Please feel free to skip over the low level details.

Last, after routing, if “verbose2” is set to true, then we open the Design with the TimingModel to find the critical path
within the completed design. This computes a more accurate timing estimate according to our model. It will print a
list of TGs that have delay. It will show net delay and logic delay, and sum them for the total datapath delay.

Mainly we are showing from a current TG, how to get to the next hop and how to see TG delays. Our printed messages
shows some example TGs as well as the low level individual wires that have been abstracted away from the user having
to consider by using the TGs.

This example was designed to illustrate basic functions, and please feel free to modify this example to experiment
building other implementations.

148 Chapter 13. RapidWright Tutorials

https://github.com/Xilinx/RapidWright/blob/master/src/com/xilinx/rapidwright/examples/PipelineGeneratorWithRouting.java

RapidWright Documentation, Release 2025.1.0-beta

13.12.6 Additional Exercises

1. Try other values for distanceX and distanceY.

2. Try modifying the PipelineGeneratorWithRouting to use the RapidWright built-in depth-based (non-timing
driven) router to compare the results.

13.13 Pre-implemented Modules - Part I

“If you were plowing a field, which would you rather use: two strong oxen or 1024 chickens?” – Seymour Cray

This tutorial has two parts. In this first part, we illustrate how you can create pre-implemented modules tailored to fit
your architecture. In the second part of this tutorial, we show how the modules can be used and replicated as part of a
design. At a high level, we will complete three tasks in Part I:

1. Design Utilization Analysis: Examine a synthesized PicoBlaze module and identify its footprint. 2. Architecture
Pattern Analysis: Identify the best instance patterns for our PicoBlaze module. 3. PBlock Selections: Create a set of
pblocks for implementing our pre-implemented PicoBlaze.

13.13.1 Background

Often times when trying to accelerate an application on an FPGA, a specific computation or routine is parallelized and
reused many times. However, the conventional FPGA compilation flow may not always take full advantage of this
optimization opportunity. One of RapidWright’s key features is the ability to preserve, replicate and reuse placed and
routed circuitry in the form of a pre-implemented module.

For the sake of simplicity and ease of implementation for this tutorial, consider the PicoBlaze. The PicoBlaze is an
8-bit programmable micro-controller provided by Xilinx (see block diagram below, Figure 1-1 from UG129, p.8)):

The PicoBlaze is a small module that consumes 1 Block RAM and ~20 CLBs. In this tutorial we will examine how
to create a reuseable, pre-implemented PicoBlaze to construct a programmable processing overlay on a Xilinx VU3P
device.

13.13. Pre-implemented Modules - Part I 149

https://en.wikipedia.org/wiki/Seymour_Cray
https://www.xilinx.com/products/intellectual-property/picoblaze.html#overview
https://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf

RapidWright Documentation, Release 2025.1.0-beta

13.13.2 Getting Started

For convenience, we have provided a synthesized, out-of-context PicoBlaze design as a starting point DCP. This was
built using the reference RTL for PicoBlaze available from Xilinx.com. To get started, let’s do the following:

1. Open a terminal and create a new directory called picoblaze.

mkdir picoblaze
cd picoblaze

2. Download picoblaze_synth.dcp to your new picoblaze directory and open it in Vivado.

vivado picoblaze_synth.dcp

1. Design Utilization Analysis

Once the design has been loaded in Vivado, let’s get the utilization report by choosing Reports->Report
Utilization... then click OK at the window prompt. A report window similar to the one below will open:

From this report we can analyze the synthesized resources used by the PicoBlaze. As expected, 1 block RAM is
consumed, with 115 LUTs, 117 flip flops and 7 CARRY8 blocks. In the UltraScale architecture, each SLICE/CLB
contains 8 LUTs, 16 flip flops and 1 CARRY8 block. Therefore the minimum number of SLICEs needed for the
PicoBlaze is:

So, in the absolute best case, we could squeeze a PicoBlaze into 15 UltraScale SLICEs. To attempt this, we would
create a pblock (area constraint) that would force the placer to only use 15 SLICEs and 1 Block RAM tile. A block
RAM tile is 5 SLICEs tall in the UltraScale architecture, so we would need 3 nearby columns of SLICEs in order to
make a compact rectangle. If we tried to use 2 SLICE columns instead of three, our SLICE footprint height would be
8 (ceiling(15/2)) which would not stride well with the 5 SLICE height of the block RAM.

To create the pblock, run the following Tcl constraints:

create_pblock pblock_1
resize_pblock pblock_1 -add {SLICE_X27Y60:SLICE_X29Y64 RAMB18_X2Y24:RAMB18_X2Y25
→˓RAMB36_X2Y12:RAMB36_X2Y12}
add_cells_to_pblock pblock_1 -top
set_property CONTAIN_ROUTING 1 [get_pblocks pblock_1]

150 Chapter 13. RapidWright Tutorials

https://www.xilinx.com/products/intellectual-property/picoblaze.html#design

RapidWright Documentation, Release 2025.1.0-beta

Note that we also use the CONTAIN_ROUTING property on the pblock of the PicoBlaze. This will ensure that the
implementation is more amenable to relocation (can be more densely packed) later. Without this attribute, the routing
will not be very reusable as it will be allowed to spread out far around the rectangle of the pblock. Once the pblock is
created, it should look like this:

We will also need to add a timing constraint to push implementation to get the best performance possible. In order to
push the tools, we should be choose a target frequency that will push the tools just beyond their capacity to achieve
timing closure. To begin, we’ll add a 400MHz clock constraint and also provide a skew estimation target for the clock
buffer to provide a more accurate timing estimation:

create_clock -period 2.5 -name clk -waveform {0.000 1.25} [get_ports clk]
set_property HD.CLK_SRC BUFGCTRL_X0Y2 [get_ports clk]

By running place_design we can gauge the feasibility of using this footprint size for implementation (spoiler. . .
this will not fit). The placer will report the errors similar to the following:

ERROR: [Place 30-488] Failed to commit 4 instances:
processor/reset_lut/LUT6 with block Id: 119 (LUT) at SLICE_X85Y150
processor/reset_lut/LUT6 with block Id: 119 (LUT) at SLICE_X85Y150
processor/reset_lut/LUT6 with block Id: 119 (LUT) at SLICE_X85Y150
processor/stack_loop[0].lsb_stack.stack_muxcy_CARRY4_CARRY8 with block Id: 134
→˓(CARRY) at SLICE_X85Y150

Warning: It has been found that Vivado 2022.2 may cause a segmentation fault when attempting to place this
pblock and users of that version are advised to skip this step

It turns out the logic is packed too tightly into the area. Another way to gauge logic density would be to check the
pblock statistics by selecting the pblock in Vivado by running the Tcl command:

select_objects [get_pblocks pblock_1]

Then choosing the Statistics tab of Pblock Properties, which would have something similar to that below:

13.13. Pre-implemented Modules - Part I 151

RapidWright Documentation, Release 2025.1.0-beta

A quick analysis shows that we are attempting to use ~96% of the LUTs in that area which is unlikely to place correctly.
Again, since BRAM tiles are stacked vertically, we must grow horizontally to ensure that we can step and repeat
without blocking access to other BRAMs with used SLICEs. Close and re-open the checkpoint then stretch/grow the
pblock with the following Tcl commands:

close_design
open_checkpoint picoblaze_synth.dcp
create_pblock pblock_1
resize_pblock pblock_1 -add {SLICE_X26Y60:SLICE_X29Y64 RAMB18_X2Y24:RAMB18_X2Y25
→˓RAMB36_X2Y12:RAMB36_X2Y12}
add_cells_to_pblock pblock_1 -top
set_property CONTAIN_ROUTING 1 [get_pblocks pblock_1]
create_clock -period 2.5 -name clk -waveform {0.000 1.25} [get_ports clk]

(continues on next page)

152 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

set_property HD.CLK_SRC BUFGCTRL_X0Y2 [get_ports clk]

To validate our new footprint, we can run the Tcl command:

place_design

again to see if we can get things to fit. This time, Vivado should successfully place the design.

2. Architecture Pattern Analysis

With a feasible pblock shape, we can now examine the architectural patterns that will lead to the highest number of
compatible places this instance of a PicoBlaze could be placed. Xilinx architectures are column-based, meaning that
every tile or resource type is the same for a column of the device layout. Consider the device floorplan view below
where major tile types have been highlighted:

Tiles of the same type have all of the same logic and local interconnect and are repetitive in their respective columns.
The main constraint for the PicoBlaze is a block RAM and we can leverage RapidWright to help us analyze the
fabric to find the most repeated tile column patterns adjacent to block RAMs. To do this, in our terminal open the
RapidWright Python interpreter by running:

rapidwright Jython

Then in the terminal we can use a class called TileColumnPattern to analyze the fabric and create a map of all
the tile patterns in the device. We can do this by running:

device = Device.getDevice("xcvu3p-ffvc1517-2-i")
colMap = TileColumnPattern.genColumnPatternMap(device)

After a few seconds it will create a map where the keys are a sequence of tile type names (a tile column pattern) and
values are a list of fabric tile column indices where the keyed tile column pattern begins. As a simple example, we can
filter the map down to a pattern of 1 BRAM to find out how many BRAM columns exist in the device:

filtered = list(filter(lambda e: TileTypeEnum.BRAM in e.getKey() and e.getKey().
→˓size() == 1, colMap.entrySet()))
print filtered

The output should look like this:

[[BRAM]=[75, 97, 137, 193, 268, 331, 340, 396, 471, 534, 571, 594]]

13.13. Pre-implemented Modules - Part I 153

RapidWright Documentation, Release 2025.1.0-beta

In this example, we have a tile column pattern length of 1, a BRAM tile. The BRAM appears in tile columns indices
75, 97, 137, . . . as shown in the image below:

Note that the tile column numbers appear much higher than what would be expected based on the number of visible
columns. This is expected as there are several tile columns not necessarily shown in the Vivado GUI, but RapidWright
is able to filter and account for the non-visible tiles. Now, for our pattern, we need to filter the map down to only
include those keys that:

1) Have 1 BRAM column

2) Have 4 SLICE (CLB) columns

To do this, we can run the following code that will print out the patterns we are interested in and sort them by most
number of instances first:

filtered = list(filter(lambda e: TileTypeEnum.BRAM in e.getKey() and not TileTypeEnum.
→˓DSP in e.getKey() and e.getKey().size() == 5, colMap.entrySet()))
filtered.sort(key=lambda x: x.getValue().size(), reverse=True)
from pprint import pprint
pprint(filtered)

The output should look like this:

[[CLEM, CLEL_R, BRAM, CLEL_R, CLEM]=[94, 134, 265, 328, 337, 468, 531, 568],
[CLEL_R, CLEM, CLEL_R, BRAM, CLEL_R]=[93, 131, 262, 334, 465],
[CLEL_R, CLEL_R, BRAM, CLEL_R, CLEM]=[70, 188, 391],
[CLEM, CLEL_R, CLEL_R, BRAM, CLEL_R]=[68, 186, 389],
[CLEL_R, CLEM, CLEL_R, CLEL_R, BRAM]=[65, 183, 386],
[CLEL_R, BRAM, CLEL_R, CLEL_R, CLEM_R]=[593],
[CLEM_R, CLEL_R, BRAM, CLEL_R, CLEL_R]=[591],

(continues on next page)

154 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

[CLEL_R, BRAM, CLEL_R, CLEM, CLEL_R]=[330],
[CLEM, CLEL_R, CLEM, CLEL_R, BRAM]=[129],
[BRAM, CLEL_R, CLEM, CLEL_R, BRAM]=[331],
[CLEL_R, CLEM_R, CLEL_R, BRAM, CLEL_R]=[588],
[BRAM, CLEL_R, CLEL_R, CLEM_R, CLEL_R]=[594]]

Our first pattern match ([CLEM, CLEL_R, BRAM, CLEL_R, CLEM]) is the most common with 8 instances in
the fabric (we can determine this by there being 8 indices in the value array). To help visualize the pattern, here is the
first instance (index 94) outlined in the previous floorplan view above with the highlighted tiles:

The second match is a juxtaposition of the first pattern and covers the same columns (note the indices are very close
to those of the first). The third, forth and fifth are also juxtapositions of each other but cover a unique set of BRAM
columns not covered and one of them will cover 3 more unique BRAM columns. Therefore, the final BRAM column
594, can be covered by the 6th, 7th, 11th or 12th pattern. For this tutorial, we will use the following three patterns:

[CLEM, CLEL_R, BRAM, CLEL_R, CLEM]=[94, 134, 265, 328, 337, 468, 531, 568]
[CLEL_R, CLEL_R, BRAM, CLEL_R, CLEM]=[70, 188, 391]
[CLEL_R, CLEM_R, CLEL_R, BRAM, CLEL_R]=[588]

3. PBlock Selections

Now that we have identified the tile column patterns for our PicoBlaze to be implemented, we must select actual
locations on the fabric to produce our replicate-able implementation. A few architectural considerations to take into
account when deciding the set of pblocks to use for an implementation are:

1) Laguna tiles: In multi-SLR devices, some SLICEs along the top and bottom clock region rows are replaced
with SLR-crossing resources called Laguna tiles. These tiles cause discontinuities in the regularity of the fab-
ric and can require special handling when creating pre-implemented modules. To best handle them, special
instantiations in the neighborhood of laguna tiles will be needed to achieve coverage in those regions.

2) Device edge: Around the edge of a device or SLR, the regular routing patterns have U-turn interconnect. These
U-turns actually make routing easier around the edge of the device, however, if you hope to create a pre-
implemented module, they must be a separate implementation if the pre-implemented module is to include
routing.

13.13. Pre-implemented Modules - Part I 155

RapidWright Documentation, Release 2025.1.0-beta

3) Clock region edge: Another routing edge case relates to clock region edges. If timing is especially critical,
some routes, even though a pblock using CONTAIN_ROUTING=1 at the edge of the clock region is turned
on, can have side loads that differ from other instances that can be just enough larger to missing timing if a
pre-implemented module is created at a non-edge location. In Vivado, these side loads can be seen by clicking
the settings (gear icon) at the top right of the device window and turning on Device->Nets->Used Stub
as shown in the screenshot below.

An example of these stubs (side loads) can be seen in a PicoBlaze implementation seen in the image below:

156 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

As this PicoBlaze instance moves around the fabric, if the used stubs ever cross a clock region boundary, their timing
will be increased slightly and can cause the pre-implemented module to close timing at a slightly lower frequency (0
to 5%). To avoid this problem, one can pre-implement the replicated circuit at both the top and bottom edges of a
clock region so that the worst case timing is already factored in. The top or bottom implementation can then be used
throughout the middle of a clock region without affecting its timing characteristics negatively.

Heterogeneous architectures can become an obstacle to relocatability, however, with the proper pblock selection, full
coverage can be achieved. For simplicity of this tutorial, we will work around these issues by ignoring clock region
timing edge effects and not using areas next to Laguna and SLR edges. Ultimately, we must do the following to create
re-usable pblocks:

1) Decide on the number of instances required for the desired coverage

2) Identify the proper origin of the pblock(s)

3) Correctly calculate the pblock ranges by capturing all resource coordinate systems

To make things simple, we will only use three pblocks to achieve complete coverage in the center three clock region
rows.

Next, we can use the Vivado Device view of an already open instance of the PicoBlaze design to help us visually locate
our pblock origins.

For our first pblock, we can select the bottom of a middle clock region with an instance of the first pattern:

[CLEM, CLEL_R, BRAM, CLEL_R, CLEM]=[94, 134, 265, 328, 337, 468, 531, 568]

The first instance column is 94, meaning the pattern begins with tile types CLEM in column 94, for example, in
RapidWright we can query the device for a tile in that column:

device.getTile(1,94)

Which returns:

13.13. Pre-implemented Modules - Part I 157

RapidWright Documentation, Release 2025.1.0-beta

CLEM_X9Y299

Note: Notice that we used a row index of 1 (0 is the edge of the device) but that the Y coordinate is 299. The
row/column coordinate system has an origin at the top left (North West) corner of the device whereas the X/Y coordi-
nate system.

As we expect, the tile type is CLEM. We must now create a pblock that captures the pattern on the edge of a middle
clock region. By subtracting 60 (the number of SLICEs in a clock region), we arrive at tile CLEM_X9Y239. We can
select this tile in Vivado by running the Tcl command:

select_objects [get_tiles CLEM_X9Y239]

then using the toolbar button for pblock creation, we can use the mouse to create an outlined rectangular region that
includes 20 SLICEs and 1 RAMB36 as shown in the screenshot below:

A confirmation window will pop up, make sure all the Grids are selected then click OK. By using this technique, we
can be assured to get the proper ranges for both BRAM and SLICEs in our pblock. To get the created pblock ranges,
run the Tcl command:

get_property GRID_RANGES [get_selected_objects]

This should print:

RAMB36_X1Y47:RAMB36_X1Y47 RAMB18_X1Y94:RAMB18_X1Y95 SLICE_X13Y235:SLICE_X16Y239

This is our first pblock. We can repeat this process for the other two patterns to get the following list of pblocks:

RAMB36_X1Y47:RAMB36_X1Y47 RAMB18_X1Y94:RAMB18_X1Y95 SLICE_X13Y235:SLICE_X16Y239
RAMB36_X0Y47:RAMB36_X0Y47 RAMB18_X0Y94:RAMB18_X0Y95 SLICE_X7Y235:SLICE_X10Y239
RAMB36_X11Y47:RAMB36_X11Y47 RAMB18_X11Y94:RAMB18_X11Y95 SLICE_X157Y235:SLICE_X160Y239

Now store these three pblocks in a text file (or download the one we have already created) called
picoblaze_pblocks.txt in our picoblaze directory. With these three pblocks, we are ready to move on to
full implementation of these modules. Please continue with Pre-implemented Modules - Part II.

158 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

13.14 Pre-implemented Modules - Part II

“If you were plowing a field, which would you rather use: two strong oxen or 1024 chickens?” – Seymour Cray

This tutorial has two parts. In the first part, we showed how you can create pre-implemented modules tailored to
fit your architecture. In this second part of the tutorial, we show how to assemble the PicoBlaze instances into a
programmable overlay. To accomplish this, we will perform the following tasks:

1. Implementation Optimization: Use RapidWright and Vivado to get the best PicoBlaze implementations. 2. Building
the Overlay: Replicate and stitch our pre-implemented PicoBlazes into an overlay.

13.14.1 1. Implementation Optimization

From Pre-implemented Modules - Part I, we finished by creating three pblocks to be used for our PicoBlaze im-
plementation. Now that we know what our three pblock sizes are, we can use PerformanceExplorer, a
tool provided with RapidWright, to help us explore implementation performance of each of these instances. The
PerformanceExplorer is able to parallelize many different runs of place and route using different direc-
tives and also sweep clock uncertainty to explore the solution space. By leveraging Vivado and RapidWright’s
PerformanceExplorer, we are able to capture the best implementation runs for reuse.

The RapidWright PerformanceExplorer can be run directly from the command line:

rapidwright PerformanceExplorer -h

which prints help and options detail:

==
== DCP Performance Explorer ==
==
This RapidWright program will place and route the same DCP in a variety of
ways with the goal of achieving higher performance in timing closure. This
tool will launch parallel jobs with the cross product of:

< placer directives x router directives x clk uncertainty settings >

Option (* = required) Description
--------------------- -----------
-?, -h Print Help
-b <String: PBlock file, one set of

ranges per line>

* -c <String: Name of clock to
optimize>

-d [String: Run directory (jobs data (default: <current directory>)
location)]

* -i <String: Input DCP>
-m [String: Min clk uncertainty (ns)] (default: -0.1)
-p [String: Comma separated list of (default: Default, Explore)

place_design -directives]
-q [Boolean: Sets attribute on pblock (default: true)

to contain routing]
-r [String: Comma separated list of (default: Default, Explore)

route_design -directives]
-s [String: Clk uncertainty step (ns)] (default: 0.025)

* -t <String: Target clock period (ns)>
-u [String: Comma separated list of

clk uncertainty values (ns)]
-x [String: Max clk uncertainty (ns)] (default: 0.25)

(continues on next page)

13.14. Pre-implemented Modules - Part II 159

https://en.wikipedia.org/wiki/Seymour_Cray

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

-y [String: Specifies vivado path] (default: vivado)
-z [Integer: Max number of concurrent (default: 12)

job when run locally]

To run PerformanceExplorer for our PicoBlaze design and three selected pblocks, we would run the following
at the command line (where picoblaze_pblocks.txt the pblock file from Part I):

Danger: DO NOT USE THIS IN A TUTORIAL VIRTUAL MACHINE, it will crash the VM.
PerformanceExplorer is best used with a compute cluster (such as LSF). It can be used on a single worksta-
tion, but, the number of parallel runs combined with their length can quickly add up to days of compute time.

DON'T RUN THIS IN A TUTORIAL VIRTUAL MACHINE
rapidwright PerformanceExplorer -c clk -i picoblaze_synth.dcp -t 2.85 -b picoblaze_
→˓pblocks.txt

The PerformanceExplorer will then create a unique directory and launch a Vivado run for each unique job
specification. There are four main parameters by which a job can be specified:

1) Placer Directive (place_design -directive option)

2) Router Directive (route_design -directive option)

3) Clock Uncertainty (applied before placement, then removed before routing)

4) PBlock (optional)

In our run of PerformanceExplorer above, we have the following set:

1) [Default, Explore]

2) [Default, Explore]

3) [-0.100, -0.075, -0.050, -0.025. 0.0, 0.025, 0.050, 0.075, 0.100, 0.125, 0.150, 0.175, 0.200, 0.225, 0.250]

4) [pblock0, pblock1, pblock2]

This yields a total of 2 x 2 x 15 x 3 = 180 runs. On a single workstation, this would take several hours depending on
the number of parallel cores used (defaults to half the number of CPU cores, use -z option to specific core count). To
avoid this lengthy step in the tutorial, we provide histograms of the results and best implementations here:

160 Chapter 13. RapidWright Tutorials

https://en.wikipedia.org/wiki/Platform_LSF

RapidWright Documentation, Release 2025.1.0-beta

13.14. Pre-implemented Modules - Part II 161

RapidWright Documentation, Release 2025.1.0-beta

It seems Vivado was able to get the best performance from pblock0 which is the one with the floorplan that occurs
most often. Although the histograms provide a view of what was achieved across 60 runs for each pblock, we really
only care about the best results as those are what we move on with to the next step. For those curious, full performance
results can be downloaded here: picoblaze_results.xlsx.

PBlock WNS (2.850ns period) Max Operating Freq.
pblock0 0.300ns 392MHz
pblock1 0.178ns 374MHz
pblock2 0.207ns 378MHz

Download the best placed and routed implementations here: picoblaze_best.zip into your picoblaze direc-
tory then unzip the file:

unzip picoblaze_best.zip

13.14.2 2. Building the Overlay

Each PicoBlaze instance has a set of 4, 8-bit input ports {a,b,c,d} and 4, 8-bit output ports {w,x,y,z}. Our
array of PicoBlaze instances will create columns on top of BRAM sites. The inter-module connectivity pattern for
each column of PicoBlaze instances will follow this pattern:

For each column, there will be one 8-bit top-level input that will drive any inputs that don’t have matching connecting
instances. There will be one 8-top level output driven by the top PicoBlaze’s output z, all other outputs without
matching connecting instances will be left unconnected.

RapidWright Java code to instantiate and place the three PicoBlaze pre-implemented modules and stitch them together
is found in RapidWright/com/xilinx/rapidwright/examples/PicoBlazeArray.java. This can
be run at the command line with the following command:

rapidwright PicoBlazeArray

Without any parameters, we get a simple usage message:

USAGE: <pblock dcp directory> <part> <output_dcp> [--no_hand_placer]

To run, we must provide the path to the directory where our pblock DCPs are located, the target device part name and
an output DCP name:

162 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

rapidwright PicoBlazeArray `pwd` xcvu3p-ffvc1517-2-i picoblaze_array.dcp

The program will read each of the pblock DCPs and stitch them together, printing out runtime numbers for each step.
By default, the program will open the HandPlacer to enable the user to examine the placed PicoBlazes (you can
skip the hand placer by adding --no_hand_placer as the last argument). Here is a screenshot of the tool:

You can zoom in/out using the scroll wheel of your mouse (or Ctrl + - to Zoom Out and Ctrl + = to Zoom In) and
can move the pre-implemented PicoBlaze instances if you wish to change any of their placement. As you move the
blocks, you’ll notice two things. First, the color of the block will change depending on its contextual location:

• Green = Valid Placement

• Orange = Valid Placement but overlapping

• Red = Invalid Placement

13.14. Pre-implemented Modules - Part II 163

RapidWright Documentation, Release 2025.1.0-beta

You’ll also notice colored lines that appear as you drag the blocks. These lines show high-level connectivity of the
blocks to other blocks. The thicker the lines, the more tightly connected it is to its neighbors. If you choose to change
the placement, its results will automatically be saved. Close the Hand Placer window, and the program will write out
a placed and routed PicoBlaze array DCP.

Close any existing DCPs that are open in Vivado and open our new picoblaze_array.dcp:

close_design
open_checkpoint picoblaze_array.dcp

Once the design opens in Vivado, we find that RapidWright has “copied and pasted” our PicoBlaze 396 times in the
center clock region rows of the VU3P as shown in the screenshot below:

164 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

To finalize the design, we simply need to update the clock tree, route the interconnections between PicoBlaze instances
and check timing. This can be performed with the following Tcl commands:

update_clock_routing
route_design
report_timing_summary -delay_type min_max -report_unconstrained -check_timing_verbose
→˓-max_paths 10 -input_pins -routable_nets -name timing_1

Once we are done, we should get a fully routed implementation that looks similar to this (or you can download our
result here picoblaze_array_routed.dcp):

In our example, we had over 100ps of positive slack on the worst setup paths and meeting all hold requirements with
at least 10ps of slack:

13.14. Pre-implemented Modules - Part II 165

RapidWright Documentation, Release 2025.1.0-beta

Although our clock period constraint is 2.85ns, we could run the array a bit higher at 365MHz. With some additional
effort, we could increase the number of instances on the VU3P to 720 if we were to work around device edge cases,
laguna tiles and one of the columns that wasn’t utilized due pattern overlap.

13.14.3 Conclusion

Although building an array of PicoBlaze microcontrollers probably won’t be used as the next architecture for deep
learning acclerators or crypto miners, it has demonstrated how RapidWright and Vivado can be used together to
achieve some interesting architectural structures in FPGA fabric. Specifically we have shown:

1) PBlock / Area Constraint Analysis - Getting the area constraint to the right footprint size

2) Tile Column Pattern Analysis - Picking the right patterns for maximum placement coverage

3) Performance Exploration - Using RapidWright and Vivado to find and harvest the best implementations

4) Overlay Construction - Using RapidWright to copy & paste implementations and stitch them together

13.15 Create and Use an SLR Bridge

The goal of this tutorial is to combine a RapidWright generated circuit with a Vivado design.

13.15.1 Background

In this example, we implement a 4-to-1 TDM (Time-division Multiplexing) design that reduces the number of valuable
SLR (Super Logic Region) crossing resources by 4X. SLR crossing resources (super long lines or SLLs) are inter-die
connectivity resources within the package and are often in high demand. RapidWright can generate a highly tuned SLR
bridge within seconds as a drop-in implementation (.DCP) capable of running at near-spec performance (~750MHz).
This tutorial will demonstrate how to use such a bridge and maintain high performance in common design flows.

The TDM circuit and its connectivity with a RapidWright SLR bridge is shown in the figure below.

166 Chapter 13. RapidWright Tutorials

https://en.wikipedia.org/wiki/Time-division_multiplexing

RapidWright Documentation, Release 2025.1.0-beta

The TDM circuit switches between 4 low frequency signals (1X CLK) to drive data into the faster clock domain (4X
CLK), and vice versa. The red-dotted line shows the boundary and encompasses the circuit that will be generated
directly from RapidWright. Due to the challenging nature of crossing SLRs, RapidWright has a dedicated circuit
generator for SLR crossings that can custom route the clock to avoid hold time issues and minimize inter-SLR delay
penalties to provide an implementation that achieves high performance (>700MHz).

By taking this approach, greater bandwidth over the SLR boundaries can be achieved and/or minimizing the total
number of SLLs used–leaving them available for other applications such as when building a shell.

13.15.2 Getting Started

Building the Bridge

Begin by creating a directory for our work in this tutorial:

mkdir bridge_tutorial
cd bridge_tutorial

Our first task is to generate an SLR crossing bridge from RapidWright. RapidWright has a dedicated generator for this
purpose called the SLRCrossingGenerator which can be run from the command line. To invoke the help/options
output of the tool simply run:

rapidwright SLRCrosserGenerator -h

This should produce the following output:

13.15. Create and Use an SLR Bridge 167

RapidWright Documentation, Release 2025.1.0-beta

==
== SLR Crossing DCP Generator ==
==
This RapidWright program creates a placed and routed DCP that can be
imported into UltraScale+ designs to aid in high speed SLR crossings. See
RapidWright documentation for more information.

Option Description
------ -----------
-?, -h Print Help
-a [String: Clk input net name] (default: clk_in)
-b [String: Clock BUFGCE site name] (default: BUFGCE_X0Y218)
-c [String: Clk net name] (default: clk)
-d [String: Design Name] (default: slr_crosser)
-i [String: Input bus name prefix] (default: input)
-l [String: Comma separated list of (default: LAGUNA_X2Y120)

Laguna sites for each SLR crossing]
-n [String: North bus name suffix] (default: _north)
-o [String: Output DCP File Name] (default: slr_crosser.dcp)
-p [String: UltraScale+ Part Name] (default: xcvu9p-flgb2104-2-i)
-q [String: Output bus name prefix] (default: output)
-r [String: INT clk Laguna RX flops] (default: GCLK_B_0_1)
-s [String: South bus name suffix] (default: _south)
-t [String: INT clk Laguna TX flops] (default: GCLK_B_0_0)
-u [String: Clk output net name] (default: clk_out)
-v [Boolean: Print verbose output] (default: true)
-w [Integer: SLR crossing bus width] (default: 512)
-x <Double: Clk period constraint (ns)>
-y [String: BUFGCE cell instance name] (default: BUFGCE_inst)
-z [Boolean: Use common centroid] (default: false)

As you can see, this generator has several parameterizable options. In this case, we will want a bridge that provides
32 wires in both directions using a single column of Laguna tiles. We will use the xcvu7p-flva2104-2-i part for our
example and use the far edge Laguna column for our crossing. As RapidWright must custom route the clock to
preserve the carefully tuned leaf clock buffer delays, it must include a BUFGCE instance. We also specify the location
of the BUFG to improve timing reproducibility in the application context. To generate such a bridge run the following
at the command line:

rapidwright SLRCrosserGenerator -l LAGUNA_X20Y120 -b BUFGCE_X1Y80 -w 32 -o slr_
→˓crosser_vu7p_32.dcp -p xcvu7p-flva2104-2-i

After several seconds, a new file, slr_crosser_vu7p_32.dcp should appear in our working directory, let’s open
it in Vivado to examine what we have created.

vivado slr_crosser_vu7p_32.dcp

Once open, the device view (Window->Device) should look something like this:

168 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

We can also add a timing constraint to test the pre-implemented performance of the bridge with the following Tcl
commands:

create_clock -name clk -period 1.333 [get_nets clk]
report_timing_summary -delay_type min_max -report_unconstrained -check_timing_verbose
→˓-max_paths 10 -input_pins -routable_nets -name timing_1

We have specified a 750MHz clock constraint (1.333 ns period) and the timing report should show postive slack for
both setup and hold. Close this design in Vivado once you are done (don’t save your changes):

close_design

Combining the Designs

Now that we know we have a correct bridge, we can begin on our main design. To do so, we have provided a
synthesized version of our TDM circuit where N=32. To open synth32_BB.dcp, run the following Tcl commands
in Vivado’s Tcl prompt:

exec wget http://www.rapidwright.io/docs/_downloads/synth32_BB.dcp
open_checkpoint synth32_BB.dcp

Look at the Vivado netlist view of the synth32_BB.dcp design. The SLR Bridge (crossing instance) has been
left open as a black box to be populated with our RapidWright bridge implementation, see the screenshot below for
reference:

13.15. Create and Use an SLR Bridge 169

RapidWright Documentation, Release 2025.1.0-beta

Note: For ease of use of this tutorial, we have provided a synthesized circuit with a black box. However, in common
practice, the generated DCP from RapidWright can simply be instantiated in Verilog/VHDL directly and the DCP
added to the sources of the project.

To import our SLR bridge, we will use the read_checkpoint command at the Tcl prompt:

read_checkpoint -cell crossing slr_crosser_vu7p_32.dcp

Note that the netlist icon next to crossing should change from dark to white. The black box has now been populated
with our custom SLR bridge implementation we just created in RapidWright.

Implementation

We can now proceed to constrain the design and run place and route by sourcing the run_PnR.tcl script in Vivado
by running the following Tcl commands in Vivado’s Tcl prompt:

exec wget http://www.rapidwright.io/docs/_downloads/run_PnR.tcl
source run_PnR.tcl

Alternatively, you can copy and paste the contents of the Tcl file below into the Tcl console in Vivado:

Add pblocks
create_pblock pblock_top
add_cells_to_pblock pblock_top [get_cells [list T_top]] -clear_locs
resize_pblock [get_pblocks pblock_top] -add {CLOCKREGION_X5Y5:CLOCKREGION_X5Y5}
create_pblock pblock_bot
add_cells_to_pblock pblock_bot [get_cells [list T_bot]] -clear_locs
resize_pblock [get_pblocks pblock_bot] -add {CLOCKREGION_X5Y4:CLOCKREGION_X5Y4}
Implement design and save

(continues on next page)

170 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

place_design
route_design
write_checkpoint -force routed_32.dcp

This can take several minutes (up to 30 minutes inside the tutorial virtual machine). For those wishing to skip ahead,
we have provided our own implementation of the results of the above Tcl commands here: routed_32.dcp. In the
Device model view, our implementation looks like this:

For additional analysis of timing reports can be performed on the specific paths crossing the SLR and leading up to it
by sourcing the run_timing.tcl script in Vivado by running the following Tcl commands in Vivado’s Tcl prompt:

13.15. Create and Use an SLR Bridge 171

RapidWright Documentation, Release 2025.1.0-beta

exec wget http://www.rapidwright.io/docs/_downloads/run_timing.tcl
source run_timing.tcl

Alternatively, you can copy and paste the contents of the Tcl file below into the Tcl console in Vivado:

report to GUI
report_timing_summary -delay_type min_max -report_unconstrained -check_timing_verbose
→˓-max_paths 10 -input_pins -routable_nets -name timing_all
report_timing -from {*/input0_north_reg*} -delay_type min_max -max_paths 10 -sort_by
→˓group -input_pins -name timing_North
report_timing -from {*/output0_north_reg*} -delay_type min_max -max_paths 10 -sort_by
→˓group -input_pins -name timing_North_after
report_timing -to {*/input0_north_reg*} -delay_type min_max -max_paths 10 -sort_by
→˓group -input_pins -name timing_North_before
report_timing -from {*/input0_south_reg*} -delay_type min_max -max_paths 10 -sort_by
→˓group -input_pins -name timing_South
report_timing -from {*/output0_south_reg*} -delay_type min -max_paths 10 -sort_by
→˓group -input_pins -name timing_South_after
report_timing -to {*/input0_south_reg*} -delay_type min_max -max_paths 10 -sort_by
→˓group -input_pins -name timing_South_before

This will produce several tabs in the Timing window tab as shown below:

The clock constraint for the design is 1.4ns and our implementation met timing with 0.02ns of positive slack, meaning
it can be implemented with a >710MHz fast (4X) clock. This is quite close to the spec of the VU7P which is 775MHz.

Conclusion

We have shown how pre-implemented designs can be integrated into existing Vivado design flows to achieve near-spec
performance.

13.16 RapidWright FPGA 2019 Deep Dive Tutorial

Before starting the tutorials, see Getting Started below to setup your machine.

172 Chapter 13. RapidWright Tutorials

RapidWright Documentation, Release 2025.1.0-beta

Tutorial Segment Time Purpose

5 mins Intro to RapidWright within Jupyter Notebook

10 mins How to build a netlist from scratch
15 mins How to generate a circuit in RapidWright
15 mins How to create a pre-implemented module
15 mins How to use and relocate pre-implemented modules

20 mins Fast probe routing on existing implementation

(Linux only) 15 mins How to use a SAT engine to solve routing congestion
20 mins Combine Vivado and RapidWright generated citcuits

= Jupyter Notebook Tutorial

These tutorials were given in the Sunday afternoon session of FPGA 2019 (February 24th).

13.16.1 Supplimentary Materials:

• Slides from the Sunday morning session: FPGA19-RapidWright-Presentation.pdf

• The invited tutorial paper: FPGA19-RapidWright.pdf

13.16.2 Getting Started

Before attempting the tutorials above, please install and/or setup the following tools:

1. RapidWright 2018.3.1

2. Vivado 2018.3

3. Eclipse or IntelliJ (not required, but mentioned in)

4. Jupyter Notebook and the RapidWright Kernel (for Jupyter Notebook tutorials)

5. Download the RapidWright-binder repository by running the following at the command line:

git clone https://github.com/clavin-xlnx/RapidWright-binder.git

6. Start the Jupyter notebook server and point it at your RapidWright-binder directory:

jupyter notebook --notebook-dir=RapidWright-binder

At this point the above Jupyter notebook tutorial links should open properly.

13.16. RapidWright FPGA 2019 Deep Dive Tutorial 173

FPGA19_Workshop.html
FPGA19_Workshop.html
FPGA19_Workshop.html
FPGA19_Workshop.html
FPGA19_Workshop.html
http://isfpga.org/workshops.html
https://www.xilinx.com/support/download.html

RapidWright Documentation, Release 2025.1.0-beta

13.17 RapidWright FCCM 2019 Workshop

Tutorial Segment Time Purpose

5 mins Intro to RapidWright within Jupyter Notebook

10 mins How to build a netlist from scratch
15 mins How to generate a circuit in RapidWright
15 mins How to create a pre-implemented module
15 mins How to use and relocate pre-implemented modules

20 mins Fast probe routing on existing implementation

(Linux only) 15 mins How to use a SAT engine to solve routing congestion
20 mins Combine Vivado and RapidWright generated citcuits

20 mins How to build a basic router in RapidWright

These tutorials were given in the Wednesday morning workshop of FCCM 2019 (May 1st).

13.17.1 Getting Started

Before attempting the tutorials above, please install and/or setup the following tools:

1. RapidWright 2018.3.3

2. Vivado 2018.3

3. Eclipse or IntelliJ (not required, but mentioned in)

4. Jupyter Notebook and the RapidWright Kernel (for Jupyter Notebook tutorials)

5. Download the RapidWright-binder repository by running the following at the command line:

git clone https://github.com/clavin-xlnx/RapidWright-binder.git

6. Start the Jupyter notebook server and point it at your RapidWright-binder directory:

jupyter notebook --notebook-dir=RapidWright-binder

At this point the above Jupyter notebook tutorial links should open properly.

= Jupyter Notebook Tutorial

13.18 RapidWright FPL 2019 Tutorial

Title: RapidWright: Enabling Application-optimized FPGA Implementations Where: Vertex building at the
UPC/BSC Campus, Barcelona, Spain - FPL 2019 When: Thursday, September 12th, 2019, morning half-day Or-
ganizers: Chris Lavin and Alireza Kaviani

174 Chapter 13. RapidWright Tutorials

FPGA19_Workshop.html
FPGA19_Workshop.html
FPGA19_Workshop.html
FPGA19_Workshop.html
FPGA19_Workshop.html
http://fccm.org/home/program/
https://www.xilinx.com/support/download.html
FPGA19_Workshop.html
https://fpl2019.bsc.es/
https://fpl2019.bsc.es/

RapidWright Documentation, Release 2025.1.0-beta

13.18.1 What is RapidWright?

RapidWright is an open source framework providing a gateway to Vivado’s back-end implementation tools. It enables
a broad range of new capabilities related to FPGA implementation such as:

• Build well-defined placed and routed circuits in seconds

• Enables parameterizable placed and routed circuit generators

• Reuse and relocate P&R circuits from Vivado

• Quickly combines P&R circuits that enable efficient shells and overlays

Additionally, RapidWright provides a new validation path for FPGA CAD researchers. New techniques and algorithms
can be demonstrated on the latest commercial devices—crisply quantifying their contributions to both industry and
academia.

13.18.2 Tutorial Content

This tutorial will combine presentation and hands-on tutorials. An overview of RapidWright, its capabilities, and
vision for the future will be presented. For the hands-on portion, attendees will be provided with a USB flash drive
and instructions to run the tutorials on their own laptop using a virtual machine. The hands-on session will consist of
1:1 Q&A while participants work through selected tutorials at their own leisure.

The list of tutorial topics will include (but are not limited to):

• Building placed and routed circuits from scratch

• Creating parameterized, generated circuits

• Walk-through of how to build a ~400 instance PicoBlaze accelerator overlay

• A fast, non-intrusive ILA (ChipScope) debug probe re-router

• Using a SAT engine to resolve routing congestion

• How to combine a RapidWright SLR bridge with Vivado-based designs

Attendees of this tutorial can expect to:

1. Gain a deeper understanding of how to leverage Xilinx architecture

2. Know how to use RapidWright and apply its capabilities in their own designs

3. Learn about design methodologies that can lead to near-spec performance

RapidWright opens a new path for domain-specific implementation tools that will improve performance and produc-
tivity and we invite the community to help us further the potential of FPGA technology. Please join us in Barcelona
on September 12th for the RapidWright Tutorial held at FPL!

13.18.3 Details

You can register for the tutorial at the FPL 2019 website.

Attendees will need to bring a laptop that can support the following:

• A laptop capable of reading and writing to a USB 3.1 flash drive with a Type A port

• Able to install Virtual Box 6.0.x

• Laptop can support a virtual machine with 6GB of RAM (8GB preferred)

• Enable Intel VT / AMD-V (64-bit OS virtualization) in BIOS

13.18. RapidWright FPL 2019 Tutorial 175

http://rapidwright.io
https://fpl2019.bsc.es/registration
https://www.virtualbox.org/wiki/Downloads

RapidWright Documentation, Release 2025.1.0-beta

• If running Linux, you’ll need to install exFAT packages in order to mount the USB flash drive:

sudo yum install exfat-utils fuse-exfat # CentOS / RedHat
sudo apt install exfat-fuse exfat-utils # Ubuntu / Debian

13.18.4 Questions?

Contact organizers:

• Chris Lavin - chris.lavin‘at‘xilinx.com

• Alireza Kaviani - alireza.kaviani‘at‘xilinx.com

13.19 RapidWright ICCAD 2023 Hands-on Tutorial

Slides | Invited Paper | Reference Handout Title: RapidWright: Unleashing the Full Power of FPGA
Technology with Domain-Specific Tooling Organizers: Chris Lavin and Eddie Hung Where: Artisan Room, Hyatt
Regency San Francisco Downtown SOMA, ICCAD 2023 When: Wednesday, November 1st, 2023, 11:00am PDT

• 11:00am - 11:05am : Machine Allocation

• 11:05am - 11:15am : Introduction and Overview

• 11:15am - 1:00pm : Hands-on, self-guided tutorials

Featured Tutorial Seg-
ments

Time Description

30
mins

Create a pre-implemented shell from an existing design without
pblocks

25
mins

Use a 3rd party placer with the FPGA Interchange Format

15
mins

Create placed and routed circuits from scratch in seconds

35
mins

Add debug logic without changing existing placement and routing

Additional Tutorial Segments Time Description

5 mins Intro to RapidWright in Jupyter Notebooks

10 mins How to build a netlist from scratch
15 mins How to create a pre-implemented module
15 mins Use & relocate pre-implemented modules

15 mins Use SAT to solve hard routing congestion
20 mins Combine Vivado & RapidWright circuits

20 mins How to build a basic router in RapidWright

= Jupyter Notebook Tutorial

176 Chapter 13. RapidWright Tutorials

https://en.wikipedia.org/wiki/ExFAT
https://iccad.com/

RapidWright Documentation, Release 2025.1.0-beta

Note: To run the Jupyter Notebook tutorials (those marked with the icon above), first run

cd ~/RapidWright-binder
jupyter notebook

in a separate terminal in the AWS Instance to start the server, then click on the corresponding tutorial segments above.

13.19.1 Questions?

Contact organizers:

• Chris Lavin - chris.lavin‘at‘amd.com

• Eddie Hung - eddie.hung‘at‘amd.com

13.19. RapidWright ICCAD 2023 Hands-on Tutorial 177

RapidWright Documentation, Release 2025.1.0-beta

178 Chapter 13. RapidWright Tutorials

CHAPTER

FOURTEEN

TECH ARTICLES

14.1 Call RapidWright from C/C++ Using GraalVM

Several RapidWright users have wondered about the prospects of using RapidWright in a C or C++ application even
though it is written in Java. Previously, the only option was to use the Java Native Interface (JNI) and run an instance
of a JVM in order to make such communication possible. However, a new project called GraalVM provides some
exciting new capabilities to Java as it is a universal virtual machine and compiler ecosystem built around the JVM. It
has several features, but some highlights are:

• As GraalVM is a JVM, it comes with new just-in-time compilation technology to run Java faster

• Compile Java applications to native code for fast startup times

• Write Java programs using interpreted languages such as Python, Ruby, JavaScript and also support their C
extensions

• Compile Java code as a native shared object library

In this article, we’ll focus on that last feature which enables us to package up RapidWright as a shared object library
with header files to be called by C/C++ applications. To get started, we are going to target a Linux environment and
use Bash commands for our example (GraalVM is still in the early stages for support in Windows).

For the impatient, we have provided an example tar ball with example source code and Makefile to run the
entire flow, just run these four commands:

wget http://www.rapidwright.io/docs/_downloads/GraalVMExample.tar.gz
tar zxf GraalVMExample.tar.gz
cd GraalVMExample
make

For a more in depth explanation of how this all works, see the rest of the article below.

14.1.1 Get Setup

First, navigate to a directory where you would like to install/practice the steps provided in this article. We’ll need to
install GraalVM and use the GraalVM Updater to install it’s native-image package:

wget https://github.com/oracle/graal/releases/download/vm-19.0.0/graalvm-ce-linux-
→˓amd64-19.0.0.tar.gz
tar zxf graalvm-ce-linux-amd64-19.0.0.tar.gz
export PATH=$PWD/graalvm-ce-19.0.0/bin:$PATH
gu install native-image

Next we’ll install RapidWright and set RAPIDWRIGHT_PATH:

179

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://www.graalvm.org/
https://medium.com/graalvm/graalvm-ten-things-12d9111f307d
https://www.graalvm.org/docs/reference-manual/graal-updater/

RapidWright Documentation, Release 2025.1.0-beta

git clone https://github.com/Xilinx/RapidWright.git
cd RapidWright
./gradlew compileJava
export RAPIDWRIGHT_PATH=$PWD

It turns out that the native compilation feature of GraalVM does not support certain kinds of reflection that are used in
Jython, so we need to remove that dependency and associated code in order to create the shared object library:

rm RapidWright/src/com/xilinx/rapidwright/util/RapidWright.java
rm RapidWright/bin/com/xilinx/rapidwright/util/RapidWright.class
rm RapidWright/jars/{jython-standalone-2.7.0,jupyter-kernel-jsr223,jeromq-0.3.6,json,
→˓junit-4.12}.jar

14.1.2 Building a Bridge

Now that GraalVM and RapidWright have been installed and prepared, we can focus on building the bridge between
Java and our native application. As Java and C/C++ are fundamentally different languages with differing runtimes,
some additional effort is needed to enable cross-language APIs callable from C/C++. This article provides an example
on how to create a few API wrappers for C/C++, however, we refer the reader to the GraalVM documentation and
Javadocs for more advanced usage.

We will choose a couple RapidWright APIs we would like to make available in C++, they are the Java methods:

• Device.getDevice(String deviceName)

• Device.getTile(int column, int row)

To expose these two APIs to C/C++ using GraalVM, we need to declare two new methods and annotate them with
@CEntryPoint. When annotating methods with @CEntryPoint, it must meet a few requirements, namely:

1. The Java method must be declared static

2. The @CEntryPoint annotation requires the C API name (name = "functionName")

3. The first parameter must be an execution context (IsolateThread or Isolate)

4. All other parameters must be Java primitive values (int, long, char, . . .), C helper classes (CCharPointer, CInt-
Pointer,. . .) or a Java enum annotated with @CEnumLookup

Below is an example Java class RapidWrightAPI.java that illustrates how these two Java APIs could be imple-
mented to provide the C interface requirements while accessing RapidWright Java functionality. Note that this Java
class will need to be compiled with GraalVM as it imports special features from its native-image library.

package com.xilinx.rapidwright.examples;

import org.graalvm.nativeimage.IsolateThread;
import org.graalvm.nativeimage.c.function.CEntryPoint;
import org.graalvm.nativeimage.c.type.CCharPointer;
import org.graalvm.nativeimage.c.type.CTypeConversion;

import com.xilinx.rapidwright.device.Device;

public class RapidWrightAPI {

@CEntryPoint(name = "loadDevice")
public static void loadDevice(IsolateThread thread, CCharPointer deviceName) {

String devName = CTypeConversion.toJavaString(deviceName);
System.out.print("Loading device " + devName + "...");

(continues on next page)

180 Chapter 14. Tech Articles

https://www.graalvm.org/docs/reference-manual/aot-compilation/
https://www.graalvm.org/sdk/javadoc/index.html?org/graalvm/nativeimage/c/package-summary.html
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/c/function/CEntryPoint.html
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/IsolateThread.html
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/Isolate.html
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/c/type/CCharPointer.html
https://www.graalvm.org/sdk/javadoc/index.html?org/graalvm/nativeimage/c/type/CIntPointer.html
https://www.graalvm.org/sdk/javadoc/index.html?org/graalvm/nativeimage/c/type/CIntPointer.html
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/c/constant/CEnumValue.html

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Device d = Device.getDevice(devName);
System.out.println("DONE!");

}

@CEntryPoint(name = "getTileName")
public static CCharPointer getTileName(IsolateThread thread, CCharPointer

→˓deviceName, int row, int column) {
String devName = CTypeConversion.toJavaString(deviceName);
Device d = Device.getDevice(devName);
return CTypeConversion.toCString(d.getTile(row, column).getName()).get();

}
}

The loadDevice() API is redundant because the getTileName() also will load the device if it is not already in
memory, this is just to provide second point of illustration. Also note that GraalVM provides a set of utility methods
to convert to and from Java and C types CTypeConversion such as Java Strings to C char*.

14.1.3 Ready to Build a .so (Linux Shared Object Library)

Now that we have a few APIs, we can test them out by using GraalVM to compile our example and then create a
shared object library and header file as shown in the flow below:

Run the following commands to download the example API code, compile it and create a shared object library using
GraalVM:

wget http://www.rapidwright.io/docs/_downloads/RapidWrightAPI.java -O $RAPIDWRIGHT_
→˓PATH/src/com/xilinx/rapidwright/examples/RapidWrightAPI.java
export CLASSPATH=$RAPIDWRIGHT_PATH/bin:$(find $RAPIDWRIGHT_PATH/jars -name '*.jar' |
→˓grep -Ev 'jython|jupyter|win64|jeromq|json|junit' | tr '\n' ':')
javac $RAPIDWRIGHT_PATH/src/com/xilinx/rapidwright/examples/RapidWrightAPI.java -d
→˓$RAPIDWRIGHT_PATH/bin
native-image --no-server -cp $CLASSPATH --no-fallback --initialize-at-build-time --
→˓shared -H:Name=librapidwright

If all goes well, you should now have a librapidwright.so and librapidwright.h file present in your
current directory.

14.1.4 Testing it Out

Now for the fun part, we can create a C or C++ application that will make use of the new RapidWright APIs! Here’s
a small C++ program that prints out a grid of tile names for a given device:

14.1. Call RapidWright from C/C++ Using GraalVM 181

https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/c/type/CTypeConversion.html

RapidWright Documentation, Release 2025.1.0-beta

#include <iostream>
// This is the header file created by native-image (Graal)
#include <librapidwright.h>

using namespace std;

int main(int argc, char **argv) {
// This is some Graal boilerplate code
graal_isolate_t *isolate = NULL;
graal_isolatethread_t *thread = NULL;

if (graal_create_isolate(NULL, &isolate, &thread) != 0) {
fprintf(stderr, "graal_create_isolate error\n");
return 1;

}
// End boilerplate

int maxRow = 105;
int maxCol = 105;
char * devName = argv[1];

// Load the device in RapidWright, the device will be
// persistent in memory until it is unloaded
loadDevice(thread, devName);

// Get tile names based on row/column indices and print out
// the tile names for a few tiles
for (int row = 100; row < maxRow; row++){

for (int col = 100; col < maxCol; col++){
std::cout << "Tile[" << col << "," << row << "] = \"" <<

getTileName(thread, devName, row, col) << "\"" << std::endl;
}

}

// Clean up Graal stuff
if (graal_detach_thread(thread) != 0) {

fprintf(stderr, "graal_detach_thread error\n");
return 1;

}

return 0;
}

There is some GraalVM boilerplate before and after we use the APIs in RapidWright, but we can compile this with any
C++ compiler. The program prints out all the tiles in grid between tiles located at (100,100) and (104,104) inclusive,
or 25 different tile names. We can compile and run this program by running the following:

wget http://www.rapidwright.io/docs/_downloads/RapidWrightExample.cpp
g++ RapidWrightExample.cpp -I. -L. -lrapidwright
export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH && ./a.out xcvu9p

If all goes well, you should see the following output:

Loading device xcvu9p...DONE!
Tile[100,100] = "CLEL_R_X10Y803"
Tile[101,100] = "NULL_X101Y832"
Tile[102,100] = "NULL_X102Y832"

(continues on next page)

182 Chapter 14. Tech Articles

RapidWright Documentation, Release 2025.1.0-beta

(continued from previous page)

Tile[103,100] = "CLEM_X11Y803"
Tile[104,100] = "INT_X11Y803"
Tile[100,101] = "CLEL_R_X10Y802"
Tile[101,101] = "NULL_X101Y831"
Tile[102,101] = "NULL_X102Y831"
Tile[103,101] = "CLEM_X11Y802"
Tile[104,101] = "INT_X11Y802"
Tile[100,102] = "CLEL_R_X10Y801"
Tile[101,102] = "NULL_X101Y830"
Tile[102,102] = "NULL_X102Y830"
Tile[103,102] = "CLEM_X11Y801"
Tile[104,102] = "INT_X11Y801"
Tile[100,103] = "CLEL_R_X10Y800"
Tile[101,103] = "NULL_X101Y829"
Tile[102,103] = "NULL_X102Y829"
Tile[103,103] = "CLEM_X11Y800"
Tile[104,103] = "INT_X11Y800"
Tile[100,104] = "CLEL_R_X10Y799"
Tile[101,104] = "NULL_X101Y828"
Tile[102,104] = "NULL_X102Y828"
Tile[103,104] = "CLEM_X11Y799"
Tile[104,104] = "INT_X11Y799"

If you have questions or ideas on how to make better use of GraalVM, please post ideas and questions on the Rapid-
Wright forum.

14.2 Using RapidWright Directly in Python 3

14.2.1 TL;DR

pip install rapidwright

14.2.2 Introduction

Although RapidWright is written in Java, there is significant interest to access it from Python. Python has many
features that make it a great choice for rapid prototyping and scripting solutions. In fact, RapidWright ships with
Jython (Python implemented in Java) to provide an authentic Python experience.

Despite RapidWright’s Jython integration, for real-world Python development, the world has transitioned to Python
3 and depend on packages that have native implementations which are incompatible with Jython. This has generally
excluded RapidWright (with the exclusion of the experimental GraalVM’s Python) from working directly with Python
3.

However, there is a Python package called JPype that enable Python to call Java packages directly as if they were native
APIs. This tutorial shows you how RapidWright can take advantage of this package to use RapidWright directly in
your Python projects.

14.2.3 Python Virtual Environments

A highly recommeneded way to develop in Python is to use Virtual Environments. Python Virtual Environments allow
you to isolate your Python modules and installation from the default system installation. As each project can have a

14.2. Using RapidWright Directly in Python 3 183

https://github.com/Xilinx/RapidWright/discussions
https://github.com/Xilinx/RapidWright/discussions
https://www.jython.org/
https://www.graalvm.org/reference-manual/python/
https://jpype.readthedocs.io/en/latest/
https://docs.python.org/3/tutorial/venv.html

RapidWright Documentation, Release 2025.1.0-beta

variety of specific needs and version dependencies, having a dedicated Virtual Environment per project can make for
a smoother development experience and minimize conflicts.

14.2.4 Pre-requisites

• Python 3

• Java 1.8 or later

14.2.5 Setting up a Virtual Python Environment

The Python module used to create a virtual environment is called venv. For more details about configuring a virtual
environment, please refer to the `venv documentation <https://www.graalvm.org/reference-manual/python/>‘_. The
default settings of a virtual environment can be set up with the following command:

python3 -m venv venv

This will create a directory called venv which will contain the essential ingredients for a Python interpreter and its
environment. To activate the virtual environment, run:

source venv/bin/activate

or on Windows, run:

venv\Scripts\activate

In either case your terminal prompt should now have a prefix (venv). To leave or deactivate the virtual environment,
simply run:

deactivate

14.2.6 Running RapidWright in the Virtual Environment

Now that the virtual environment is setup, we can begin to experiment with RapidWright. As mentioned in the
introduction, Jpype1 is listed as a dependency, so if we simply run:

pip install rapidwright

It will be installed automatically. Then we can run Python:

python

To use RapidWright inside the Python interpreter (or a script), all we need to do is simply:

import rapidwright

On the very first invocation of this import, it will take a few seconds to get things set up. After the first time, it will be
faster.

At this point, you can import java classes to allow you to access any RapidWright Java API:

from com.xilinx.rapidwright.device import Device
device = Device.getDevice(Device.AWS_F1)

184 Chapter 14. Tech Articles

https://www.graalvm.org/reference-manual/python/

RapidWright Documentation, Release 2025.1.0-beta

At this point you can also get tab-completion on the Java classes, for example:

>>> device.
device.AWS_F1 device.getClass(device.
→˓getSLRByConfigOrderIndex(
device.DEVICE_FILE_VERSION device.getClockRegion(device.
→˓getSLRs(
device.FRAMEWORK_NAME device.getClockRegionFromTile(device.
→˓getSeries(
device.FRAMEWORK_NAME_AND_VERSION device.getClockRegions(device.
→˓getSite(
device.KCU105 device.getColumns(device.
→˓getSiteFromPackagePin(
device.PYNQ_Z1 device.getDevice(device.
→˓getSitePin(
device.QUIET_MESSAGE device.getDeviceName(device.
→˓getSiteTypeCount(
device.RAPIDWRIGHT_MINOR_VERSION device.getDeviceVersion(device.
→˓getTile(
device.RAPIDWRIGHT_QUARTER_VERSION device.getFamilyType(device.
→˓getTileTypeCount(
device.RAPIDWRIGHT_VERSION device.getMasterSLR(device.
→˓getTiles(
device.RAPIDWRIGHT_YEAR_VERSION device.getName(device.
→˓getWire(
device.RW_QUIET_MESSAGE device.getNode(device.
→˓hashCode(
device.a(device.getNumOfClockRegionRows(device.
→˓notify(
device.equals(device.getNumOfClockRegionsColumns(device.
→˓notifyAll(
device.getActivePackage(device.getNumOfSLRs(device.
→˓quietReflectiveAccessWarning(
device.getAllCompatibleSites(device.getPIP(device.
→˓releaseDeviceReferences(
device.getAllSitesOfType(device.getPackage(device.
→˓setActivePackage(
device.getAllTiles(device.getPackages(device.
→˓toString(
device.getArchitecture(device.getRows(device.
→˓wait(
device.getAvailableDevices(device.getSLR(
>>> device.

Which is quite handy. Object return types are translated for primitive types (int, String, . . .), but Java objects are
preserved and can be accessed via APIs as well:

>>> device.getName()
'xcvu9p'
>>> device.getTiles()
<java array 'com.xilinx.rapidwright.device.Tile[][]'>

Although there is limited interaction, you can also run RapidWright GUI applications from Python:

>>> from com.xilinx.rapidwright.device.browser import DeviceBrowser
>>> DeviceBrowser.main([])

We expect this integration capability with Python to help increase RapidWright’s applicability to a wider number of
projects. There are more opportunities for integration as well, so stay tuned!

14.2. Using RapidWright Directly in Python 3 185

RapidWright Documentation, Release 2025.1.0-beta

Fig. 1: Screen capture of RapidWright’s Device Browser called from Python

186 Chapter 14. Tech Articles

RapidWright Documentation, Release 2025.1.0-beta

14.2.7 Java Development and Python

When you install the Python RapidWright package, it downloads the standalone jar so it can run without any extra
setup. However, if you already have a git repo checked out and compiled, you can tell the Python RapidWright package
to point to your local install by setting the following environment variables:

RAPIDWRIGHT_PATH=<path_to_RapidWright_directory_checked_out_from_GitHub>
CLASSPATH=$RAPIDWRIGHT_PATH/bin:$RAPIDWRIGHT_PATH/jars/*

This way, the Python RapidWright will use your development copy of RapidWright.

14.2.8 Things to Know When Using RapidWright in Python

Equality

In Java, there are two main ways to check for equality:

1. Reference equality, == operator

2. Object equality, equals() method

Reference equality essentially checks if two objects point to the same reference or location in memory. Whereas
equals() invokes the method on referenced object’s class definition.

Jpype has chosen to map the Python == operator to use the Java equals() method and the Java == is not directly
accessible. More on this can be found in Jpype documentation.

14.3 Setup JUnit 5 Tests in RapidWright

RapidWright uses JUnit 5 for Unit Testing. This article aims to give an overview about how to run tests, as well as
how to write your own.

14.3.1 Running the Tests

All testcases are located in the test/ directory. JUnit does not need a central list of testcases. Instead, it searches the
directory for all classes that contain tests. Tests are marked by annotations (see later). After builing a list of all tests,
it executes them one by one.

Some tests depend on DCPs which are stored in a Git submodule — a feature that allows a specific commit of another
Git repository to exist as a subdirectory of the current repository. To check out the specific commit of a submodule,
run:

git submodule update --init

from the parent RapidWright repository where --init is only strictly necessary (but harmless otherwise) on the first
invocation.

To run the tests via Gradle, use the task test or build (which depends on test). After running the tests, Gradle
will output the results both as an HTML document in build/reports/tests/test* and as JUnit-internal XML
in build/test-results/test*. Note that Gradle knows whether the input to the tests changed and will not
rerun them if they are up to date.

There is integration for JUnit in all major IDEs. When loading RapidWright into your IDE, you should set test as
source directory for tests. Your IDE should allow you to run all the tests or choose a single class to run. Alternatively,

14.3. Setup JUnit 5 Tests in RapidWright 187

https://jpype.readthedocs.io/en/latest/userguide.html#classes

RapidWright Documentation, Release 2025.1.0-beta

one can execute Gradle from the command line with the testJava or testPython task to run all tests, and
restricted to specific tests with one or more --tests <filter> arguments. For example:

./gradlew testJava --tests com.xilinx.rapidwright.design.* --tests *PartNameTools.
→˓testGetPartCase

would run all Java test methods under all classes within the com.xilinx.rapidwright.design pack-
age, as well as the single test method testGetPartCase from the com.xilinx.rapidwright.device.
TestPartNameTools class. Note that the test task depends on testJava and testPython but does not
support filtering.

14.3.2 Writing Testcases

JUnit uses Annotations to tag methods as testcases. While there are more specialized annotations, most testcases will
be tagged with the annotation @Test (from the org.junit.jupiter.api package).

A test class with a single (empty) test method might look like this:

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
public class MyTestClass {

@Test
public void test() {

}
}

Test methods should be public and cannot be static and not have parameters. JUnit will create an instance of the
class, so the class cannot have any constructor parameters.

Testcases communicate failures by throwing an exception. JUnit will then mark it accordingly. Instead of using an
if to check for something and then manually creating an exception, you can use the Assertions class (from the
package org.junit.jupiter.api). It offers convenience methods for often used checks:

• assertEquals

• assertArrayEquals

• assertNotEquals

• assertSame

All these methods have a parameter for an expected value and an actual value. Optionally, a message parameter can
be passed to explain what part of the test encountered an error.

A very simple test to check that addition works as expected might look like this:

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
public class MyTestClass {

@Test
public void test() {

Assertions.assertEquals(2, 1 + 1);
}

}

188 Chapter 14. Tech Articles

RapidWright Documentation, Release 2025.1.0-beta

14.3.3 Parameterized Tests

Normal test methods do not have parameters. If you want to run the same test on a range of data, you can use a loop.
However, once the test fails for one set of data, the whole testcase execution is over. Data after the first failure will not
be run.

JUnit allows parameters on testcases. They are marked with @ParameterizedTest instead of @Test. The
annotation has an optional parameter (name) that allows you to override the generated test’s name to make it more
descriptive.

You need to specify a source for values for these parameters. One option is use a separate method that return a
Collection<Arguments> or Stream<Arguments>. One instance of Arguments describes one invocation
of the testcase method. The value source is specified as another annotation (here: @MethodSource).

A simple example that calls testNonzero(int i) on all numbers from 1 to 10:

import java.util.stream.IntStream;
import java.util.stream.Stream;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.MethodSource;

public class MyTestClass {
@ParameterizedTest(name = "Check that {0} is nonzero")
@MethodSource()
public void testNonzero(int i) {

Assertions.assertNotEquals(0, i);
}

public static Stream<Arguments> testNonzero() {
return IntStream.rangeClosed(1, 10).mapToObj(i -> Arguments.of(i));

}
}

14.3.4 RapidWright-specific Considerations

RapidWright’s tests are automatically run on Github Actions. There are rather strict restrictions in terms of maximum
memory (7GB) and some parts of RapidWright can exceed that limit. You should keep this limitation in mind while
writing testcases:

• Testcases should be limited to a single Device. If you have to use multiple Devices, take care that only one
Device is referenced at the same time.

• When instantiating a Design, use a small Device for it.

To identify issues with files being left open, there is a JUnit extension that compares the list of open files before
and after a testcase. It will fail the testcase if there are changes. This extension (com.xilinx.rapidwright.
support.CheckOpenFilesExtension) is automatically registered when JUnit tests are run with Gradle.

Testcase DCPs

Tests requiring new DCP(s) will need to fork the RapidWrightDCP repository to gain write permissions.

The DCP(s) to be added should have no encrypted components inside and the EDIF inside the DCP should be readable
(not encrypted). A readable EDIF file can be generated using Vivado either automatically upon load in RapidWright

14.3. Setup JUnit 5 Tests in RapidWright 189

https://github.com/eddieh-xlnx/RapidWrightDCP
http://www.rapidwright.io/javadoc/com/xilinx/rapidwright/design/Design.html#RW_AUTO_GENERATE_READABLE_EDIF

RapidWright Documentation, Release 2025.1.0-beta

or via write_edif (see RapidWright and Design Checkpoint Files). Use the ReplaceEDIFInDCP tool to replace
the EDIF inside a DCP, for example:

rapidwright ReplaceEDIFInDCP design.dcp readable_design.edf

will replace the EDIF file inside design.dcp with readable_edif.edf.

Next, execute the following:

Add, commit, push new DCP(s) into new branch on fork
cd test/RapidWrightDCP
git remote add fork https://github.com/<user>/RapidWrightDCP # Only necessary first
→˓invocation
git checkout -b <branch>
git add <dcp_name>
git commit
git push -u fork <branch>
cd ../..

Commit new submodule reference
git commit test/RapidWrightDCP -s -m "(Description)"

The submodule can now be used as a regular Git repository during development; remember to commit new submodule
references from the RapidWright repository using:

git commit test/RapidWrightDCP -s -m "(Description)"

Once ready, please create new pull requests in both the upstream RapidWright and RapidWrightDCP repositories.
When both pull requests have been approved, the following situation will be present:

RapidWrightDCP (upstream) ... o--o---------------x
\ / (PR#123)

RapidWrightDCP (fork) ... o--o ... o--o
^ (commit `abc`)

RapidWright (upstream) ... o--o---------------x
\ / (PR#456)

RapidWright (fork) ... o--o ... o--o
^ (submodule refers to commit `abc`

on RapidWrightDCP fork)

Here, RapidWright’s PR#456 refers to commit abc which is present only on the fork. The expectation would be that
the RapidWrightDCP’s PR#123 would be merged first after which PR#456 can then update its RapidWrightDCP
submodule reference to include upstream’s newly merged result:

RapidWrightDCP (upstream) ... o--o---------------o (commit `def` including
\ / PR#123)

RapidWrightDCP (fork) ... o--o ... o--o

RapidWright (upstream) ... o--o------------------o
\ / / (PR#456)

RapidWright (fork) ... o--o ... o--o--o
^ (submodule updated to commit `def`

on RapidWrightDCP upstream)

This submodule reference can be updated back to upstream as follows:

190 Chapter 14. Tech Articles

RapidWright Documentation, Release 2025.1.0-beta

Return submodule to upstream master
cd test/RapidWrightDCP
git checkout master
git pull
cd ../..

Commit new submodule reference
git commit test/RapidWrightDCP

14.4 RapidWright Data Files

Table of Contents

• RapidWright Data Files

– On-demand Data File Downloads

– Local Storage of Data Files

– Avoiding On-demand Download & Generation of Data Files

RapidWright maintains support for the full set of devices publicly available in the latest Vivado release. The infor-
mation needed to populate RapidWright device models is stored in binary data files distributed with RapidWright.
Starting in the 2021.1.0 release, these data files began to be distributed via a download on-demand model. This was
done to accelerate installation, reduce disk space requirements and provided an easier path to upgrade.

14.4.1 On-demand Data File Downloads

All of the code involved in downloading and checking for data files is in the open source portion of RapidWright.
Most of the code is found in com.xilinx.rapidwright.util.FileTools. All data files are specified by an
MD5 checksum with a master list checked in at src/com/xilinx/rapidwright/util/DataVersions.
java. When the user calls an API that requires a RapidWright data file, it will check the local file MD5 against the
DataVersions.java to ensure they match. RapidWright caches the current data file’s MD5 by creating a small
file alongside the data file with a .md5 extension for speed. If the file is missing or doesn’t match that expected MD5,
it will attempt to download the file. This will happen behind the scenes transparent to the user with the exception that
the first time call will take a bit longer since it is downloading the file.

If desired, a user can turn off the on-demand data file download feature by calling FileTools.
setOverrideDataFileDownload(true) at the start of their RapidWright program.

14.4.2 Local Storage of Data Files

RapidWright data files are stored in two ways depending on how RapidWright has been installed.

Standalone Jar (Binary)

If RapidWright is installed using the standalone jar downloaded directly from a GitHub release or a Python pip install,
the files are located in an OS-specified user directory:

• For Windows, %USER%\AppData\Roaming\RapidWright or a path set by the environment variable
APPDATA

14.4. RapidWright Data Files 191

RapidWright Documentation, Release 2025.1.0-beta

• For Linux, ~/.local/share/RapidWright or a path set by the environment variable XDG_DATA_HOME

It should be noted that the first time RapidWright is invoked using the standalone jar method, it will unpack a minimal
set of data files that were included with the standalone jar to the directory cited above.

GitHub Clone (Source Code)

If RapidWright is installed by a clone of the GitHub repository (or a snapshot of the source code), the default directory
is the directory created by the clone of the code (./RapidWright).

Override Data File Location

Both standalone jar and GitHub clone options can be overriden by setting the environment varable
RAPIDWRIGHT_PATH. This will avoid the creation of the default OS/user specific directories.

14.4.3 Avoiding On-demand Download & Generation of Data Files

Two potential challenges exist for on-demand data file download and generation:

1. Lack of persistent Internet connectivity

2. Collisions due to independent, parallel instances of RapidWright runs

To alleviate the need for Internet access, the easiest option is to invoke the API FileTools.
updateAllDataFiles() when Internet connectivity is available. After successful completion of calling this
method, every potential data file that RapidWright could download will have been downloaded on the local system.
To run this method from the command line run:

rapidwright jython -c 'FileTools.updateAllDataFiles()'

Note that this does not generate device cache files that can also potentially cause collisions if independent RapidWright
instances are run simultaneously.

To eliminate file download/generation collisions, the API FileTools.ensureDataFilesAreStaticInstallFriendly(String.
.. devices) has been created. Due to the overhead of generating a device cache file for each device, the user can
specify the specific devices anticipated during future runs. As an example, to run this API from the command line for
the xc7a100t and xc7a200t devices, run:

rapidwright jython -c "FileTools.ensureDataFilesAreStaticInstallFriendly("xc7a100t",
→˓"xc7a200t")'

Another option to avoid on-demand download is to obtain the rapidwright_data.zip
file associated with the current release (see assets from the corresponding ‘GitHub Re-
leases<https://github.com/Xilinx/RapidWright/releases>‘_) and replace the data directory in the RapidWright
directory with its contents.

Note: Due to GitHub size limitations, 2022.1.0 to 2022.2.3 and 2024.1.0 and later releases, the data files are split
into two downloads (rapidwright_data.zip and rapidwright_data2.zip). In 2023.1.0, we switched to
Zstandard compression for all our data files that has allowed the release to be consolidated back to a single release
zip file, but newer devices starting in 2024.1.0 caused the release to exceed the limit again. All files except Series 7
devices are in rapidwright_data.zip and Series 7 devices are in rapidwright_data2.zip.

192 Chapter 14. Tech Articles

CHAPTER

FIFTEEN

FREQUENTLY ASKED QUESTIONS

15.1 I can’t open my DCP in RapidWright, I get ‘ERROR: Couldn’t de-
termine a proper EDIF netlist to load with the DCP file . . . ’, what
should I do?

RapidWright is able to read any unencrypted design files. If a design/DCP has been encrypted, you’ll need to generate
a new file without encryption in order to use it with RapidWright.

However, sometimes without explicitly invoking encryption, Vivado will encrypt the EDIF file present in a DCP
automatically (it is quite common). To enable reading the DCP within RapidWright, load the DCP in Vivado and
then create a similarly named EDIF file (mydesign.dcp –> mydesign.edf) by running the command write_edif
mydesign.edf. This will generate an unencrypted EDIF file (only if encryption is turned off and the design does
not contain any encrypted IPs) that RapidWright can recognize and load in with the rest of the DCP.

RapidWright comes with a small utility called ReplaceEDIFInDCP that can avoid the use of two files for situations
that may require that convenience.

New in 2021.1.0, RapidWright can now invoke Vivado automatically to call write_edif on the DCP attempting
to be loaded at runtime. However, a compatible Vivado version must be on the PATH of the RapidWright program at
runtime.

15.2 Can RapidWright be used for designs targeting the AWS F1 plat-
form?

Yes, there are some ways in which parts of a design generated in RapidWright can be inserted into an existing AWS-
F1 design. One technique uses the Vivado command read_checkpoint -cell <cell_instance_name>
<checkpoint.dcp>. If you insert a blackbox that matches your DCP (see the stub files inside the DCP file) into
your AWS-F1 design, you can use the read_checkpoint command to pull in a synthesized, placed and/or routed
DCP into the existing design.

Note that RapidWright cannot read in the AWS F1 shell design as it is encrypted and user design data is encrypted by
default.

15.3 When should I use RapidWright and when should I use Vivado?

We recommend that Vivado be used for all tasks that meet the users expectations. If you have designs that are running
successfully and meeting your design constraints, there is no need to use RapidWright. However, if you are seeking
to improve performance and/or productivity because of unique insights you might have into your application and/or

193

RapidWright Documentation, Release 2025.1.0-beta

the FPGA architecture being targeted, RapidWright might be able to help. Vivado will always be part of the flow for
validating designs (DRC/Timing) and creating bitstreams. However, there may be strategic design structures that can
be created, preserved and/or replicated in RapidWright that might help you achieve your performance goals.

15.4 What languages does RapidWright support, and how do I inter-
act with them?

RapidWright is written in Java. RapidWright is also packaged with a Python interpreter called Jython that enables
it to run pure Python scripts and code. We recommend that for more compute intensive work, Java implementations
be the language of choice as it will execute faster. Python is especially useful for interacting with RapidWright in
a command-line type fashion. This allows device and design objects to remain persistent as the user examines their
work and choose to make changes on the fly.

For C and C++, we have a tech article (see Call RapidWright from C/C++ Using GraalVM) that describes how you
can create a RapidWright shared object library enabling APIs to be called from C or C++ using a compiler framework
called GraalVM.

15.5 Why is the framework called RapidWright?

The ‘Rapid’ portion is to indicate speed and efficiency. It also provides some resemblance from a previous generation
framework called RapidSmith. The ‘Wright’ portion was a common surname in England and means maker or builder.
RapidWright is a framework to help you quickly build designs for Vivado.

15.6 Can RapidWright generate bitstreams?

No. There is currently no bitstream information in RapidWright. Any designs will need to be put back into Vivado for
DRC and bitstream generation.

15.7 Does RapidWright provide device timing information?

RapidWright now includes a lightweight timing model for UltraScale+ devices (see RapidWright Report Tim-
ing Example). For other devices, timing results can be obtained by exporting a design using the Design.
writeCheckpoint() command and loading the design in Vivado to report timing.

15.8 Does RapidWright support partial reconfiguration (PR)?

RapidWright does not have specific support for PR, but it can be used to generated designs or partial designs intended
to be partially reconfigured. This can be done by generating designs and then importing them into PR-based projects
in Vivado using read_checkpoint -cell <cell_name> <dcp_name>, where the cell is a black box.

15.9 Is there any published work on RapidWright?

Yes, we had a paper at FCCM 2018 (The 26th IEEE International Symposium on Field-Programmable Custom Com-
puting Machines). A preprint copy of the paper is available here: FCCM18-RapidWright.pdf. The presentation

194 Chapter 15. Frequently Asked Questions

http://www.jython.org
https://www.graalvm.org/
http://fccm.org/2018/program.html#program

RapidWright Documentation, Release 2025.1.0-beta

slides are avilable here: FCCM18-RapidWright-Presentation.pdf.

15.9. Is there any published work on RapidWright? 195

RapidWright Documentation, Release 2025.1.0-beta

196 Chapter 15. Frequently Asked Questions

CHAPTER

SIXTEEN

GLOSSARY

Laguna When a device is composed of multiple dies (using SSIT), CLBs are replaced with Laguna Tiles and Sites to
provided dedicated logic to crossing from one die to the next. Laguna sites contain dedicated RX and TX flip
flops that connect to SLLs.

Shell A static FPGA design that provides a common interface to off-chip resources (DDR, PCIe,. . .) intended for
multiple applications.

SLL Super long line, these are the wires that cross between dies in a multi-die device (see SSIT).

SLR Super logic region, in multi-die devices, each super logic region is one die connected to other die via an inter-
poser. The routing wires that connect these SLRs are SLLs). Also see SLR (Super Logic Region).

SSIT Stacked silicon interconnect technology: Xilinx uses an interposer substrate to package multiple FPGA die into
a single package.

Tile Pattern A sequence of tile types. For example, the 7 series device family have four types of CLB tiles
(CLBLL_L, CLBLL_R, CLBM_R, CLBM_L). A PBlock can cover several tile columns, thus spaning sev-
eral heterogeneous tile types. If the logic implemented within the pblock is relocated on the device, it must use
the same tile pattern, meaning sequence of CLB tile types must match.

197

RapidWright Documentation, Release 2025.1.0-beta

198 Chapter 16. Glossary

INDEX

L
Laguna, 197

S
Shell, 197
SLL, 197
SLR, 197
SSIT, 197

T
Tile Pattern, 197

199

	Introduction
	What is RapidWright?
	Why RapidWright?
	What about RapidSmith?
	Vivado and RapidWright

	Getting Started
	Quick Start
	Install
	RapidWright Eclipse Setup
	RapidWright IntelliJ Setup
	RapidWright Jupyter Notebook Kernel Setup

	FPGA Architecture Basics
	What is an FPGA?
	CPU vs. FPGA
	Lookup Tables (LUTs)
	State Elements
	Carry Chains
	DSP Blocks
	Block RAMs

	Xilinx Architecture Terminology
	BEL (Basic Element of Logic)
	Site
	Tile
	FSR (Fabric Sub Region or Clock Region)
	SLR (Super Logic Region)
	Device

	RapidWright Overview
	Device Package
	EDIF Package (Logical Netlist)
	Design Package (Physical Netlist)

	Design Checkpoints
	What is a Design Checkpoint?
	What is Inside a Design Checkpoint?
	RapidWright and Design Checkpoint Files

	Implementation Basics
	Placement
	Routing

	Merging Designs
	Customizing Merge Behavior

	Bitstream Manipulation
	Disclaimer
	Overview
	Bitstream Packet Model
	Configuration Array Model
	Example Usages: Modify User State Bits
	Example Usages: Find and Print the Frames of a Placed Cell

	FPGA Interchange Format
	What is the FPGA Interchange Format?
	What does the FPGA Interchange Format enable?
	How is RapidWright related to the FPGA Interchange Format?
	Additional Resources

	RapidWright Publications
	Original RapidWright Publication - FCCM 2018
	Additional RapidWright Publications
	Community Competitions
	Select Community Publications

	A Pre-implemented Module Flow
	Background and Flow Comparison
	High Performance Flow
	Rapid Prototyping Flow

	RapidWright Tutorials
	RWRoute Timing-driven Routing
	RWRoute Wirelength-driven Routing
	RWRoute Partial Routing
	RapidWright Report Timing Example
	Reuse Timing-closed Logic As A Shell
	Use DREAMPlaceFPGA to Place a Netlist via FPGA Interchange Format
	Polynomial Generator: Placed and Routed Circuits in Seconds
	Inserting and Routing a Debug Core As An ECO
	Create Placed and Routed DCP to Cross SLR
	Build an IP Integrator Design with Pre-Implemented Blocks
	RapidWright PipelineGenerator Example
	RapidWright PipelineGeneratorWithRouting Example
	Pre-implemented Modules - Part I
	Pre-implemented Modules - Part II
	Create and Use an SLR Bridge
	RapidWright FPGA 2019 Deep Dive Tutorial
	RapidWright FCCM 2019 Workshop
	RapidWright FPL 2019 Tutorial
	RapidWright ICCAD 2023 Hands-on Tutorial

	Tech Articles
	Call RapidWright from C/C++ Using GraalVM
	Using RapidWright Directly in Python 3
	Setup JUnit 5 Tests in RapidWright
	RapidWright Data Files

	Frequently Asked Questions
	I can’t open my DCP in RapidWright, I get ‘ERROR: Couldn’t determine a proper EDIF netlist to load with the DCP file …’, what should I do?
	Can RapidWright be used for designs targeting the AWS F1 platform?
	When should I use RapidWright and when should I use Vivado?
	What languages does RapidWright support, and how do I interact with them?
	Why is the framework called RapidWright?
	Can RapidWright generate bitstreams?
	Does RapidWright provide device timing information?
	Does RapidWright support partial reconfiguration (PR)?
	Is there any published work on RapidWright?

	Glossary
	Index

